論文の概要: Enhancing Diagnostic Accuracy through Multi-Agent Conversations: Using Large Language Models to Mitigate Cognitive Bias
- arxiv url: http://arxiv.org/abs/2401.14589v2
- Date: Sun, 12 May 2024 05:28:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-15 00:33:27.674001
- Title: Enhancing Diagnostic Accuracy through Multi-Agent Conversations: Using Large Language Models to Mitigate Cognitive Bias
- Title(参考訳): マルチエージェント会話による診断精度の向上:認知バイアス軽減のための大規模言語モデルを用いて
- Authors: Yu He Ke, Rui Yang, Sui An Lie, Taylor Xin Yi Lim, Hairil Rizal Abdullah, Daniel Shu Wei Ting, Nan Liu,
- Abstract要約: 臨床的意思決定における認知的バイアスは、診断の誤りや患者下結果に大きく寄与する。
本研究では,多エージェントフレームワークの利用を通じて,これらのバイアスを軽減するために,大規模言語モデルが果たす役割について検討する。
- 参考スコア(独自算出の注目度): 5.421033429862095
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Background: Cognitive biases in clinical decision-making significantly contribute to errors in diagnosis and suboptimal patient outcomes. Addressing these biases presents a formidable challenge in the medical field. Objective: This study explores the role of large language models (LLMs) in mitigating these biases through the utilization of a multi-agent framework. We simulate the clinical decision-making processes through multi-agent conversation and evaluate its efficacy in improving diagnostic accuracy. Methods: A total of 16 published and unpublished case reports where cognitive biases have resulted in misdiagnoses were identified from the literature. In the multi-agent framework, we leveraged GPT-4 to facilitate interactions among four simulated agents to replicate clinical team dynamics. Each agent has a distinct role: 1) To make the final diagnosis after considering the discussions, 2) The devil's advocate and correct confirmation and anchoring bias, 3) The tutor and facilitator of the discussion to reduce premature closure bias, and 4) To record and summarize the findings. A total of 80 simulations were evaluated for the accuracy of initial diagnosis, top differential diagnosis and final two differential diagnoses. Results: In a total of 80 responses evaluating both initial and final diagnoses, the initial diagnosis had an accuracy of 0% (0/80), but following multi-agent discussions, the accuracy for the top differential diagnosis increased to 71.3% (57/80), and for the final two differential diagnoses, to 80.0% (64/80). Conclusions: The framework demonstrated an ability to re-evaluate and correct misconceptions, even in scenarios with misleading initial investigations. The LLM-driven multi-agent conversation framework shows promise in enhancing diagnostic accuracy in diagnostically challenging medical scenarios.
- Abstract(参考訳): 背景: 臨床的意思決定における認知バイアスは, 診断の誤りや患者準最適結果に大きく寄与する。
これらのバイアスに対処することは、医療分野における深刻な課題である。
目的:本研究では,大規模言語モデル(LLM)が,マルチエージェントフレームワークの利用を通じてバイアスを軽減する役割について検討する。
我々は,多エージェント会話による臨床意思決定プロセスのシミュレートを行い,診断精度の向上に有効性を評価する。
方法: 認知バイアスが誤診となった16件の症例報告を文献から同定した。
マルチエージェントフレームワークでは,GPT-4を利用して4つの模擬エージェント間の相互作用を促進し,臨床チームのダイナミクスを再現した。
各エージェントにはそれぞれ異なる役割がある。
1)議論の後に最終診断を行う。
2 悪魔の主張及び正当性確認及び偏見
3 早期閉鎖バイアスを低減するための議論の指導者及びファシリテーター
4) 結果を記録・要約すること。
初発診断, 上発鑑別診断, 最終2つの鑑別診断の精度について, 合計80のシミュレーションを行った。
結果: 初期診断と最終診断の両方を評価する80の回答において, 初診の精度は0% (0/80) であったが, マルチエージェントによる議論の結果, トップディファレンシャル診断の精度は71.3% (57/80), 最終2つのディファレンシャル診断の精度は80.0% (64/80) に向上した。
結論: このフレームワークは、誤解を招く初期調査のシナリオであっても、誤解を再評価し、修正する能力を示した。
LLM駆動型多エージェント会話フレームワークは、診断に難渋する医療シナリオにおける診断精度を高めることを約束している。
関連論文リスト
- MINDSETS: Multi-omics Integration with Neuroimaging for Dementia Subtyping and Effective Temporal Study [0.7751705157998379]
アルツハイマー病(AD)と血管性認知症(VaD)は最も多い認知症である。
本稿では、ADとVaDを正確に区別する革新的なマルチオミクス手法を提案し、89.25%の精度で診断を行う。
論文 参考訳(メタデータ) (2024-11-06T10:13:28Z) - Methodology and Real-World Applications of Dynamic Uncertain Causality Graph for Clinical Diagnosis with Explainability and Invariance [41.373856519548404]
Dynamic Uncertain Causality Graph (DUCG)アプローチは、さまざまなアプリケーションシナリオで因果性駆動、説明可能、不変である。
54件の主訴を含む46件のDUCGモデルが製造された。
実際の診断は100万件以上行われており、誤診断は17例に過ぎなかった。
論文 参考訳(メタデータ) (2024-06-09T11:37:45Z) - Beyond Direct Diagnosis: LLM-based Multi-Specialist Agent Consultation
for Automatic Diagnosis [30.943705201552643]
本研究では,潜在的な疾患に対するエージェントの確率分布を適応的に融合させることにより,現実世界の診断過程をモデル化する枠組みを提案する。
提案手法では,パラメータ更新とトレーニング時間を大幅に短縮し,効率と実用性を向上する。
論文 参考訳(メタデータ) (2024-01-29T12:25:30Z) - Medical Dialogue Generation via Intuitive-then-Analytical Differential
Diagnosis [14.17497921394565]
Intuitive-then-Analytic Differential Diagnosis (IADDx) を用いた医用対話生成フレームワークを提案する。
本手法は,検索に基づく直感的アソシエーション(直感的アソシエーション)によるディファレンス診断から始まり,その後,グラフ強化解析手法により精査する。
提案手法の有効性を2つのデータセットで検証した。
論文 参考訳(メタデータ) (2024-01-12T12:35:19Z) - A Foundational Framework and Methodology for Personalized Early and
Timely Diagnosis [84.6348989654916]
本稿では,早期診断とタイムリー診断のための基礎的枠組みを提案する。
診断過程を概説する決定論的アプローチに基づいている。
機械学習と統計手法を統合し、最適なパーソナライズされた診断経路を推定する。
論文 参考訳(メタデータ) (2023-11-26T14:42:31Z) - The Case Records of ChatGPT: Language Models and Complex Clinical
Questions [0.35157846138914034]
臨床診断における大規模言語AIモデル GPT4 と GPT3.5 の精度について検討した。
GPT4, GPT3.5は1回の試行で26%, 22%, 3回の検行で46%, 42%の精度で正しい診断を行った。
論文 参考訳(メタデータ) (2023-05-09T16:58:32Z) - Exploring linguistic feature and model combination for speech
recognition based automatic AD detection [61.91708957996086]
音声ベースの自動ADスクリーニングシステムは、他の臨床スクリーニング技術に代わる非侵襲的でスケーラブルな代替手段を提供する。
専門的なデータの収集は、そのようなシステムを開発する際に、モデル選択と特徴学習の両方に不確実性をもたらす。
本稿では,BERT と Roberta の事前学習したテキストエンコーダのドメイン微調整の堅牢性向上のための特徴とモデルの組み合わせ手法について検討する。
論文 参考訳(メタデータ) (2022-06-28T05:09:01Z) - Semi-Supervised Variational Reasoning for Medical Dialogue Generation [70.838542865384]
医療対話生成には,患者の状態と医師の行動の2つの重要な特徴がある。
医療対話生成のためのエンドツーエンドの変分推論手法を提案する。
行動分類器と2つの推論検出器から構成される医師政策ネットワークは、拡張推論能力のために提案される。
論文 参考訳(メタデータ) (2021-05-13T04:14:35Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
臨床診断は、臨床ノートに基づいて患者に診断符号を割り当てることを目的としており、臨床意思決定において重要な役割を担っている。
本稿では,臨床自動診断のための継承誘導階層と共起グラフの伝播を組み合わせた新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-01-27T13:16:51Z) - Towards Causality-Aware Inferring: A Sequential Discriminative Approach
for Medical Diagnosis [142.90770786804507]
医学診断アシスタント(MDA)は、疾患を識別するための症状を逐次調査する対話型診断エージェントを構築することを目的としている。
この研究は、因果図を利用して、MDAにおけるこれらの重要な問題に対処しようとする。
本稿では,他の記録から知識を引き出すことにより,非記録的調査に効果的に答える確率に基づく患者シミュレータを提案する。
論文 参考訳(メタデータ) (2020-03-14T02:05:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。