論文の概要: MINDSETS: Multi-omics Integration with Neuroimaging for Dementia Subtyping and Effective Temporal Study
- arxiv url: http://arxiv.org/abs/2411.04155v1
- Date: Wed, 06 Nov 2024 10:13:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 19:39:21.294919
- Title: MINDSETS: Multi-omics Integration with Neuroimaging for Dementia Subtyping and Effective Temporal Study
- Title(参考訳): MINDSETS:認知症治療のためのマルチオミクスとニューロイメージングの統合と時間的検討
- Authors: Salma Hassan, Dawlat Akaila, Maryam Arjemandi, Vijay Papineni, Mohammad Yaqub,
- Abstract要約: アルツハイマー病(AD)と血管性認知症(VaD)は最も多い認知症である。
本稿では、ADとVaDを正確に区別する革新的なマルチオミクス手法を提案し、89.25%の精度で診断を行う。
- 参考スコア(独自算出の注目度): 0.7751705157998379
- License:
- Abstract: In the complex realm of cognitive disorders, Alzheimer's disease (AD) and vascular dementia (VaD) are the two most prevalent dementia types, presenting entangled symptoms yet requiring distinct treatment approaches. The crux of effective treatment in slowing neurodegeneration lies in early, accurate diagnosis, as this significantly assists doctors in determining the appropriate course of action. However, current diagnostic practices often delay VaD diagnosis, impeding timely intervention and adversely affecting patient prognosis. This paper presents an innovative multi-omics approach to accurately differentiate AD from VaD, achieving a diagnostic accuracy of 89.25%. The proposed method segments the longitudinal MRI scans and extracts advanced radiomics features. Subsequently, it synergistically integrates the radiomics features with an ensemble of clinical, cognitive, and genetic data to provide state-of-the-art diagnostic accuracy, setting a new benchmark in classification accuracy on a large public dataset. The paper's primary contribution is proposing a comprehensive methodology utilizing multi-omics data to provide a nuanced understanding of dementia subtypes. Additionally, the paper introduces an interpretable model to enhance clinical decision-making coupled with a novel model architecture for evaluating treatment efficacy. These advancements lay the groundwork for future work not only aimed at improving differential diagnosis but also mitigating and preventing the progression of dementia.
- Abstract(参考訳): 認知障害の複雑な領域では、アルツハイマー病 (AD) と血管性認知症 (VaD) が2つの最も多い認知症型であり、症状が絡み合っており、明確な治療アプローチが必要である。
神経変性の遅滞に対する効果的な治療の欠如は、医師が適切な行動経路を決定するのに大いに役立つため、早期かつ正確な診断にある。
しかし、現在の診断は、しばしばVaD診断を遅らせ、タイムリーな介入を阻害し、患者の予後に悪影響を及ぼす。
本稿では、ADとVaDを正確に区別する革新的なマルチオミクス手法を提案し、89.25%の精度で診断を行う。
提案手法は、縦型MRIスキャンをセグメント化し、高度な放射能特徴を抽出する。
その後、放射線学的特徴と臨床、認知、遺伝データのアンサンブルを相乗的に統合し、最先端の診断精度を提供し、大規模な公開データセットの分類精度の新しいベンチマークを設定する。
本論文の主な貢献は、認知症サブタイプに関する微妙な理解を提供するために、マルチオミクスデータを利用した包括的方法論を提案することである。
さらに,治療効果を評価するための新しいモデルアーキテクチャと組み合わせて,臨床的意思決定を向上させるための解釈可能なモデルを提案する。
これらの進歩は、鑑別診断の改善だけでなく、認知症の進行を緩和し予防することを目的とした将来の研究の基盤となった。
関連論文リスト
- Toward Robust Early Detection of Alzheimer's Disease via an Integrated Multimodal Learning Approach [5.9091823080038814]
アルツハイマー病(英: Alzheimer's Disease、AD)は、記憶障害、執行機能障害、性格変化を特徴とする複雑な神経変性疾患である。
本研究では,臨床,認知,神経画像,脳波データを統合した高度なマルチモーダル分類モデルを提案する。
論文 参考訳(メタデータ) (2024-08-29T08:26:00Z) - A Foundational Framework and Methodology for Personalized Early and
Timely Diagnosis [84.6348989654916]
本稿では,早期診断とタイムリー診断のための基礎的枠組みを提案する。
診断過程を概説する決定論的アプローチに基づいている。
機械学習と統計手法を統合し、最適なパーソナライズされた診断経路を推定する。
論文 参考訳(メタデータ) (2023-11-26T14:42:31Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
変形性膝関節症 (KOA) は膝関節の慢性的な痛みと硬直を引き起こす疾患である。
我々は,Swin Transformer を用いて KOA の重大度を予測する自動手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T09:49:30Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
アルツハイマー病(AD)は高齢者に特に顕著である。
事前学習モデルの最近の進歩は、AD検出モデリングを低レベル特徴から高レベル表現にシフトさせる動機付けとなっている。
本稿では,高レベルの音響・言語的特徴から,より優れたAD関連手がかりを抽出する,いくつかの効率的な手法を提案する。
論文 参考訳(メタデータ) (2023-03-14T16:03:28Z) - Exploring linguistic feature and model combination for speech
recognition based automatic AD detection [61.91708957996086]
音声ベースの自動ADスクリーニングシステムは、他の臨床スクリーニング技術に代わる非侵襲的でスケーラブルな代替手段を提供する。
専門的なデータの収集は、そのようなシステムを開発する際に、モデル選択と特徴学習の両方に不確実性をもたらす。
本稿では,BERT と Roberta の事前学習したテキストエンコーダのドメイン微調整の堅牢性向上のための特徴とモデルの組み合わせ手法について検討する。
論文 参考訳(メタデータ) (2022-06-28T05:09:01Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
SpineOneと呼ばれる一段階検出フレームワークを提案し、MRIスライスから変性椎骨と椎骨を同時に局在化・分類する。
1)キーポイントの局所化と分類を促進するためのキーポイント・ヒートマップの新しい設計、2)ディスクと脊椎の表現をよりよく区別するためのアテンション・モジュールの使用、3)後期訓練段階における複数の学習目標を関連付けるための新しい勾配誘導客観的アソシエーション機構。
論文 参考訳(メタデータ) (2021-10-28T12:59:06Z) - Differential Diagnosis of Frontotemporal Dementia and Alzheimer's
Disease using Generative Adversarial Network [0.0]
前頭側頭性認知症とアルツハイマー病は2種類の認知症であり、互いに誤診しやすい。
2種類の認知症を区別することは、疾患特異的な介入と治療を決定するのに不可欠である。
医用画像処理分野におけるディープラーニングベースのアプローチの最近の発展は、多くのバイナリ分類タスクにおいて、最高のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2021-09-12T22:40:50Z) - An explainable two-dimensional single model deep learning approach for
Alzheimer's disease diagnosis and brain atrophy localization [3.9281410693767036]
本稿では、アルツハイマー病(AD)の自動診断と、sMRIデータから、この疾患に関連する重要な脳領域の局所化について、エンドツーエンドのディープラーニングアプローチを提案する。
提案手法は,AD対認知正常(CN)とプログレッシブMCI(pMCI)と安定MCI(sMCI)の2つの分類タスクに対して,パブリックアクセス可能な2つのデータセットで評価されている。
実験結果から,本手法はマルチモデルや3次元CNN手法など,最先端の手法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2021-07-28T07:19:00Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
臨床診断は、臨床ノートに基づいて患者に診断符号を割り当てることを目的としており、臨床意思決定において重要な役割を担っている。
本稿では,臨床自動診断のための継承誘導階層と共起グラフの伝播を組み合わせた新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-01-27T13:16:51Z) - ADiag: Graph Neural Network Based Diagnosis of Alzheimer's Disease [0.0]
アルツハイマー病(ad、英: alzheimer's disease)は、世界中で5000万人以上の脳変性疾患である。
現在、認知テストのバッテリーのスコアリング性能の形でのみ定性的なテスト手段が採用されています。
GraphSAGE NetworkとDDP(Dense Differentiable Pooling)解析によりADを診断する新しい定量的手法であるADiagを開発した。
ADiagの予備テストは、83%の堅牢な精度を明らかにし、他の定性的および定量的診断技術を大幅に上回っています。
論文 参考訳(メタデータ) (2021-01-08T06:23:30Z) - Application of Machine Learning to Predict the Risk of Alzheimer's
Disease: An Accurate and Practical Solution for Early Diagnostics [1.1470070927586016]
アルツハイマー病(AD)は500万人以上のアメリカ人の認知能力を悪化させ、医療システムに多大な負担をかけている。
本稿では,医療画像のない,臨床訪問や検査の少ないAD開発のための機械学習予測モデルを提案する。
本モデルは,2つの顕著な研究結果から,人口統計,バイオマーカー,認知テストデータを用いて訓練し,検証した。
論文 参考訳(メタデータ) (2020-06-02T14:52:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。