From Blurry to Brilliant Detection: YOLO-Based Aerial Object Detection with Super Resolution
- URL: http://arxiv.org/abs/2401.14661v2
- Date: Wed, 09 Jul 2025 10:14:26 GMT
- Title: From Blurry to Brilliant Detection: YOLO-Based Aerial Object Detection with Super Resolution
- Authors: Ragib Amin Nihal, Benjamin Yen, Takeshi Ashizawa, Katsutoshi Itoyama, Kazuhiro Nakadai,
- Abstract summary: Aerial object detection presents challenges from small object sizes, high density clustering, and image quality degradation from distance and motion blur.<n>B2BDet addresses this with a two-stage framework that applies domain-specific super-resolution during inference, followed by detection using an enhanced YOLOv5 architecture.<n>The approach combines aerial-optimized SRGAN fine-tuning with architectural innovations including an Efficient Attention Module (EAM) and Cross-Layer Feature Pyramid Network (CLFPN)
- Score: 3.5044007821404635
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Aerial object detection presents challenges from small object sizes, high density clustering, and image quality degradation from distance and motion blur. These factors create an information bottleneck where limited pixel representation cannot encode sufficient discriminative features. B2BDet addresses this with a two-stage framework that applies domain-specific super-resolution during inference, followed by detection using an enhanced YOLOv5 architecture. Unlike training-time super-resolution approaches that enhance learned representations, our method recovers visual information from each input image. The approach combines aerial-optimized SRGAN fine-tuning with architectural innovations including an Efficient Attention Module (EAM) and Cross-Layer Feature Pyramid Network (CLFPN). Evaluation across four aerial datasets shows performance gains, with VisDrone achieving 52.5% mAP using only 27.7M parameters. Ablation studies show that super-resolution preprocessing contributes +2.6% mAP improvement while architectural enhancements add +2.9%, yielding +5.5% total improvement over baseline YOLOv5. The method achieves computational efficiency with 53.8% parameter reduction compared to recent approaches while achieving strong small object detection performance.
Related papers
- More Clear, More Flexible, More Precise: A Comprehensive Oriented Object Detection benchmark for UAV [58.89234732689013]
CODrone is a comprehensive oriented object detection dataset for UAVs that accurately reflects real-world conditions.
It also serves as a new benchmark designed to align with downstream task requirements.
We conduct a series of experiments based on 22 classical or SOTA methods to rigorously evaluate CODrone.
arXiv Detail & Related papers (2025-04-28T17:56:02Z) - Image compositing is all you need for data augmentation [6.647179199462945]
This paper investigates the impact of various data augmentation techniques on the performance of object detection models.
We fine-tune the model on a custom dataset consisting of commercial and military aircraft, applying different augmentation strategies.
arXiv Detail & Related papers (2025-02-19T18:24:02Z) - Efficient Feature Fusion for UAV Object Detection [9.632727117779178]
Small objects, in particular, occupy small portions of images, making their accurate detection difficult.<n>Existing multi-scale feature fusion methods address these challenges by aggregating features across different resolutions.<n>We propose a novel feature fusion framework specifically designed for UAV object detection tasks.
arXiv Detail & Related papers (2025-01-29T20:39:16Z) - Efficient Oriented Object Detection with Enhanced Small Object Recognition in Aerial Images [2.9138705529771123]
We present a novel enhancement to the YOLOv8 model, tailored for oriented object detection tasks.<n>Our model features a wavelet transform-based C2f module for capturing associative features and an Adaptive Scale Feature Pyramid (ASFP) module that leverages P2 layer details.<n>Our approach provides a more efficient architectural design than DecoupleNet, which has 23.3M parameters, all while maintaining detection accuracy.
arXiv Detail & Related papers (2024-12-17T05:45:48Z) - Oriented Tiny Object Detection: A Dataset, Benchmark, and Dynamic Unbiased Learning [51.170479006249195]
We introduce a new dataset, benchmark, and a dynamic coarse-to-fine learning scheme in this study.
Our proposed dataset, AI-TOD-R, features the smallest object sizes among all oriented object detection datasets.
We present a benchmark spanning a broad range of detection paradigms, including both fully-supervised and label-efficient approaches.
arXiv Detail & Related papers (2024-12-16T09:14:32Z) - SOD-YOLOv8 -- Enhancing YOLOv8 for Small Object Detection in Traffic Scenes [1.3812010983144802]
Small Object Detection YOLOv8 (SOD-YOLOv8) is designed for scenarios involving numerous small objects.
SOD-YOLOv8 significantly improves small object detection, surpassing widely used models in various metrics.
In dynamic real-world traffic scenes, SOD-YOLOv8 demonstrated notable improvements in diverse conditions.
arXiv Detail & Related papers (2024-08-08T23:05:25Z) - SOOD++: Leveraging Unlabeled Data to Boost Oriented Object Detection [59.868772767818975]
We propose a simple yet effective Semi-supervised Oriented Object Detection method termed SOOD++.
Specifically, we observe that objects from aerial images are usually arbitrary orientations, small scales, and aggregation.
Extensive experiments conducted on various multi-oriented object datasets under various labeled settings demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2024-07-01T07:03:51Z) - DASSF: Dynamic-Attention Scale-Sequence Fusion for Aerial Object Detection [6.635903943457569]
The original YOLO algorithm has low overall detection accuracy due to its weak ability to perceive targets of different scales.
This paper proposes a dynamic-attention scale-sequence fusion algorithm (DASSF) for small target detection in aerial images.
Experimental results show that when the DASSF method is applied to YOLOv8, compared to YOLOv8n, the model shows an increase of 9.2% and 2.4% in the mean average precision (mAP)
arXiv Detail & Related papers (2024-06-18T05:26:44Z) - SOAR: Advancements in Small Body Object Detection for Aerial Imagery Using State Space Models and Programmable Gradients [0.8873228457453465]
Small object detection in aerial imagery presents significant challenges in computer vision.
Traditional methods using transformer-based models often face limitations stemming from the lack of specialized databases.
This paper introduces two innovative approaches that significantly enhance detection and segmentation capabilities for small aerial objects.
arXiv Detail & Related papers (2024-05-02T19:47:08Z) - FlightScope: A Deep Comprehensive Review of Aircraft Detection Algorithms in Satellite Imagery [2.9687381456164004]
This paper critically evaluates and compares a suite of advanced object detection algorithms customized for the task of identifying aircraft within satellite imagery.
This research encompasses an array of methodologies including YOLO versions 5 and 8, Faster RCNN, CenterNet, RetinaNet, RTMDet, and DETR, all trained from scratch.
YOLOv5 emerges as a robust solution for aerial object detection, underlining its importance through superior mean average precision, Recall, and Intersection over Union scores.
arXiv Detail & Related papers (2024-04-03T17:24:27Z) - SARDet-100K: Towards Open-Source Benchmark and ToolKit for Large-Scale SAR Object Detection [79.23689506129733]
We establish a new benchmark dataset and an open-source method for large-scale SAR object detection.
Our dataset, SARDet-100K, is a result of intense surveying, collecting, and standardizing 10 existing SAR detection datasets.
To the best of our knowledge, SARDet-100K is the first COCO-level large-scale multi-class SAR object detection dataset ever created.
arXiv Detail & Related papers (2024-03-11T09:20:40Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
Single-frame infrared small target (SIRST) detection aims to recognize small targets from clutter backgrounds.
With the development of Transformer, the scale of SIRST models is constantly increasing.
With a rich diversity of infrared small target data, our algorithm significantly improves the model performance and convergence speed.
arXiv Detail & Related papers (2024-03-08T16:14:54Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Fewer is More: Efficient Object Detection in Large Aerial Images [59.683235514193505]
This paper presents an Objectness Activation Network (OAN) to help detectors focus on fewer patches but achieve more efficient inference and more accurate results.
Using OAN, all five detectors acquire more than 30.0% speed-up on three large-scale aerial image datasets.
We extend our OAN to driving-scene object detection and 4K video object detection, boosting the detection speed by 112.1% and 75.0%, respectively.
arXiv Detail & Related papers (2022-12-26T12:49:47Z) - SuperYOLO: Super Resolution Assisted Object Detection in Multimodal
Remote Sensing Imagery [36.216230299131404]
We propose SuperYOLO, which fuses multimodal data and performs high-resolution (HR) object detection on multiscale objects.
Our proposed model shows a favorable accuracy and speed tradeoff compared to the state-of-the-art models.
arXiv Detail & Related papers (2022-09-27T12:58:58Z) - SALISA: Saliency-based Input Sampling for Efficient Video Object
Detection [58.22508131162269]
We propose SALISA, a novel non-uniform SALiency-based Input SAmpling technique for video object detection.
We show that SALISA significantly improves the detection of small objects.
arXiv Detail & Related papers (2022-04-05T17:59:51Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
We present YOLO-S, a simple, fast and efficient network for small target detection.
YOLO-S exploits a small feature extractor based on Darknet20, as well as skip connection, via both bypass and concatenation.
YOLO-S has an 87% decrease of parameter size and almost one half FLOPs of YOLOv3, making practical the deployment for low-power industrial applications.
arXiv Detail & Related papers (2022-04-05T16:29:49Z) - Analysis and Adaptation of YOLOv4 for Object Detection in Aerial Images [0.0]
Our work shows the adaptation of the popular YOLOv4 framework for predicting the objects and their locations in aerial images.
The trained model resulted in a mean average precision (mAP) of 45.64% with an inference speed reaching 8.7 FPS on the Tesla K80 GPU.
A comparative study with several contemporary aerial object detectors proved that YOLOv4 performed better, implying a more suitable detection algorithm to incorporate on aerial platforms.
arXiv Detail & Related papers (2022-03-18T23:51:09Z) - Remote Sensing Image Super-resolution and Object Detection: Benchmark
and State of the Art [7.74389937337756]
This paper reviews current datasets and object detection methods (deep learning-based) for remote sensing images.
We propose a large-scale, publicly available benchmark Remote Sensing Super-resolution Object Detection dataset.
We also propose a novel Multi-class Cyclic super-resolution Generative adversarial network with Residual feature aggregation (MCGR) and auxiliary YOLOv5 detector to benchmark image super-resolution-based object detection.
arXiv Detail & Related papers (2021-11-05T04:56:34Z) - Salient Objects in Clutter [130.63976772770368]
This paper identifies and addresses a serious design bias of existing salient object detection (SOD) datasets.
This design bias has led to a saturation in performance for state-of-the-art SOD models when evaluated on existing datasets.
We propose a new high-quality dataset and update the previous saliency benchmark.
arXiv Detail & Related papers (2021-05-07T03:49:26Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
We propose a method for effective and efficient multispectral fusion of the two modalities in an adapted single-stage anchor-free base architecture.
We aim at learning pedestrian representations based on object center and scale rather than direct bounding box predictions.
Results show our method's effectiveness in detecting small-scaled pedestrians.
arXiv Detail & Related papers (2020-08-19T13:13:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.