論文の概要: FairSample: Training Fair and Accurate Graph Convolutional Neural
Networks Efficiently
- arxiv url: http://arxiv.org/abs/2401.14702v1
- Date: Fri, 26 Jan 2024 08:17:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-29 15:38:00.993872
- Title: FairSample: Training Fair and Accurate Graph Convolutional Neural
Networks Efficiently
- Title(参考訳): FairSample: 公正で正確なグラフ畳み込みニューラルネットワークを効果的にトレーニングする
- Authors: Zicun Cong, Shi Baoxu, Shan Li, Jaewon Yang, Qi He, Jian Pei
- Abstract要約: センシティブなグループに対する社会的バイアスは多くの実世界のグラフに存在するかもしれない。
本稿では,グラフ構造バイアス,ノード属性バイアス,モデルパラメータがGCNの人口動態にどのように影響するかを詳細に分析する。
私たちの洞察は、3種類のバイアスを緩和するフレームワークであるFairSampleにつながります。
- 参考スコア(独自算出の注目度): 29.457338893912656
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fairness in Graph Convolutional Neural Networks (GCNs) becomes a more and
more important concern as GCNs are adopted in many crucial applications.
Societal biases against sensitive groups may exist in many real world graphs.
GCNs trained on those graphs may be vulnerable to being affected by such
biases. In this paper, we adopt the well-known fairness notion of demographic
parity and tackle the challenge of training fair and accurate GCNs efficiently.
We present an in-depth analysis on how graph structure bias, node attribute
bias, and model parameters may affect the demographic parity of GCNs. Our
insights lead to FairSample, a framework that jointly mitigates the three types
of biases. We employ two intuitive strategies to rectify graph structures.
First, we inject edges across nodes that are in different sensitive groups but
similar in node features. Second, to enhance model fairness and retain model
quality, we develop a learnable neighbor sampling policy using reinforcement
learning. To address the bias in node features and model parameters, FairSample
is complemented by a regularization objective to optimize fairness.
- Abstract(参考訳): グラフ畳み込みニューラルネットワーク(GCN)の公平性は、GCNが多くの重要なアプリケーションで採用されるにつれて、ますます重要になる。
センシティブなグループに対する社会的バイアスは多くの実世界のグラフに存在する。
これらのグラフでトレーニングされたGCNは、そのようなバイアスの影響を受けやすい。
本稿では,人口動態の公平性の概念を広く採用し,公平かつ正確なGCNを効率的に訓練する課題に取り組む。
本稿では,グラフ構造バイアス,ノード属性バイアス,モデルパラメータがGCNの人口動態にどのように影響するかを詳細に分析する。
私たちの洞察は、3種類のバイアスを緩和するフレームワークであるFairSampleにつながります。
グラフ構造の修正には直感的な2つの戦略を用いる。
まず、異なるセンシティブなグループであるがノードの特徴に類似したノードにエッジを注入する。
第2に,モデルの公平性を高め,モデル品質を維持するため,強化学習を用いた学習可能な隣接サンプリングポリシを開発する。
ノードの特徴とモデルパラメータのバイアスに対処するため、fairsampleはフェアネスを最適化するための正規化目的によって補完される。
関連論文リスト
- Rethinking Fair Graph Neural Networks from Re-balancing [26.70771023446706]
単純な再分散手法は、既存の公正なGNN手法と容易に一致するか、追い越すことができる。
本稿では,グループバランスによるGNNの不公平さを軽減するために,再バランシングによるFairGB,Fair Graph Neural Networkを提案する。
論文 参考訳(メタデータ) (2024-07-16T11:39:27Z) - Fair Graph Neural Network with Supervised Contrastive Regularization [12.666235467177131]
公平性を考慮したグラフニューラルネットワーク(GNN)の学習モデルを提案する。
提案手法は, コントラスト損失と環境損失を統合し, 精度と公正性を両立させる。
論文 参考訳(メタデータ) (2024-04-09T07:49:05Z) - Graph Out-of-Distribution Generalization via Causal Intervention [69.70137479660113]
本稿では,ノードレベルの分散シフトの下で頑健なグラフニューラルネットワーク(GNN)をトレーニングするための,概念的に単純だが原則化されたアプローチを提案する。
本手法は,環境推定器と熟練GNN予測器を協調する因果推論に基づく新たな学習目標を提案する。
本モデルでは,様々な分散シフトによる一般化を効果的に向上し,グラフOOD一般化ベンチマーク上での最先端の精度を最大27.4%向上させることができる。
論文 参考訳(メタデータ) (2024-02-18T07:49:22Z) - Chasing Fairness in Graphs: A GNN Architecture Perspective [73.43111851492593]
グラフニューラルネットワーク(GNN)の統一最適化フレームワーク内で設計されたtextsfFair textsfMessage textsfPassing(FMP)を提案する。
FMPでは、アグリゲーションがまず隣人の情報を活用するために採用され、バイアス軽減ステップにより、人口集団ノードのプレゼンテーションセンタが明示的に統合される。
ノード分類タスクの実験により、提案されたFMPは、実世界の3つのデータセットの公平性と正確性の観点から、いくつかのベースラインを上回っていることが示された。
論文 参考訳(メタデータ) (2023-12-19T18:00:15Z) - Marginal Nodes Matter: Towards Structure Fairness in Graphs [77.25149739933596]
構造フェアネスを実現するために,textbfStructural textbfFair textbfGraph textbfNeural textbfNetwork (SFairGNN)を提案する。
実験の結果、SFairGNNは、下流タスクにおける全体的な性能を維持しながら、構造フェアネスを大幅に改善できることがわかった。
論文 参考訳(メタデータ) (2023-10-23T03:20:32Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
本稿では,GNNの逆写像に対する新しい,スケーラブルな近似による学習バイアスを軽減するために,ラベルの効率的な正規化手法,すなわちラベルのデコンボリューション(LD)を提案する。
実験では、LDはOpen Graphデータセットのベンチマークで最先端のメソッドを大幅に上回っている。
論文 参考訳(メタデータ) (2023-09-26T13:09:43Z) - Fairness-Aware Graph Neural Networks: A Survey [53.41838868516936]
グラフニューラルネットワーク(GNN)はその表現力と最先端の予測性能によってますます重要になっている。
GNNは、基礎となるグラフデータと基本的な集約メカニズムによって生じる公平性の問題に悩まされる。
本稿では,GNNの公平性向上のためのフェアネス手法の検討と分類を行う。
論文 参考訳(メタデータ) (2023-07-08T08:09:06Z) - Analyzing the Effect of Sampling in GNNs on Individual Fairness [79.28449844690566]
グラフニューラルネットワーク(GNN)ベースの手法は、レコメンダシステムの分野を飽和させた。
我々は,GNNの学習を支援するために,グラフ上で個別の公平性を促進させる既存手法を拡張した。
本研究では,局所ニュアンスが表現学習における公平化促進の過程を導くことによって,ミニバッチトレーニングが個人の公正化を促進することを示す。
論文 参考訳(メタデータ) (2022-09-08T16:20:25Z) - Fair Node Representation Learning via Adaptive Data Augmentation [9.492903649862761]
この研究は、グラフニューラルネットワーク(GNN)を用いて得られるノード表現のバイアス源を理論的に説明する。
この分析に基づいて、本質的なバイアスを低減するために、公正に意識したデータ拡張フレームワークを開発した。
分析と提案手法は,様々なGNN学習機構の公平性を高めるために容易に利用できる。
論文 参考訳(メタデータ) (2022-01-21T05:49:15Z) - Biased Edge Dropout for Enhancing Fairness in Graph Representation
Learning [14.664485680918725]
本稿では,グラフ表現学習における公平性向上と相反するバイアスド・エッジ・ドロップアウトアルゴリズム(fairdrop)を提案する。
FairDropは、多くの既存のアルゴリズムに簡単に接続でき、効率的で適応可能で、他の公平性誘導ソリューションと組み合わせることができます。
提案手法は,すべてのモデルのフェアネスを小さく,あるいは無視可能な精度低下まで改善できることを実証する。
論文 参考訳(メタデータ) (2021-04-29T08:59:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。