論文の概要: Fair Graph Neural Network with Supervised Contrastive Regularization
- arxiv url: http://arxiv.org/abs/2404.06090v1
- Date: Tue, 9 Apr 2024 07:49:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-10 15:39:15.357058
- Title: Fair Graph Neural Network with Supervised Contrastive Regularization
- Title(参考訳): コントラスト正規化を改良した公正グラフニューラルネットワーク
- Authors: Mahdi Tavassoli Kejani, Fadi Dornaika, Jean-Michel Loubes,
- Abstract要約: 公平性を考慮したグラフニューラルネットワーク(GNN)の学習モデルを提案する。
提案手法は, コントラスト損失と環境損失を統合し, 精度と公正性を両立させる。
- 参考スコア(独自算出の注目度): 12.666235467177131
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, Graph Neural Networks (GNNs) have made significant advancements, particularly in tasks such as node classification, link prediction, and graph representation. However, challenges arise from biases that can be hidden not only in the node attributes but also in the connections between entities. Therefore, ensuring fairness in graph neural network learning has become a critical problem. To address this issue, we propose a novel model for training fairness-aware GNN, which enhances the Counterfactual Augmented Fair Graph Neural Network Framework (CAF). Our approach integrates Supervised Contrastive Loss and Environmental Loss to enhance both accuracy and fairness. Experimental validation on three real datasets demonstrates the superiority of our proposed model over CAF and several other existing graph-based learning methods.
- Abstract(参考訳): 近年、グラフニューラルネットワーク(GNN)は、特にノード分類、リンク予測、グラフ表現といったタスクにおいて大きな進歩を遂げている。
しかし、課題は、ノード属性だけでなく、エンティティ間の接続にも隠されるバイアスから生じます。
したがって、グラフニューラルネットワーク学習における公平性の確保は重要な問題となっている。
この問題に対処するため、我々は、CAF(Counterfactual Augmented Fair Graph Neural Network Framework)を強化したフェアネス対応GNNのトレーニングモデルを提案する。
提案手法は, コントラスト損失と環境損失を統合し, 精度と公正性を両立させる。
3つの実データセットに対する実験的な検証は、提案したモデルがCAFや他の既存のグラフベースの学習手法よりも優れていることを示す。
関連論文リスト
- Mitigating Degree Bias in Signed Graph Neural Networks [5.042342963087923]
SGNN(Signed Graph Neural Networks)は、ソースデータと典型的な集約手法による公平性問題に対処する。
本稿では,GNN から拡張された SGNN の公正性の調査を先駆的に進める。
署名されたグラフ内の次数バイアスの問題を識別し、SGNNに関する公平性問題に対する新たな視点を提供する。
論文 参考訳(メタデータ) (2024-08-16T03:22:18Z) - Kolmogorov-Arnold Graph Neural Networks [2.4005219869876453]
グラフニューラルネットワーク(GNN)は、ネットワークのようなデータから学習する上で優れるが、解釈性に欠けることが多い。
本稿では,GKAN(Graph Kolmogorov-Arnold Network)を提案する。
論文 参考訳(メタデータ) (2024-06-26T13:54:59Z) - FairSample: Training Fair and Accurate Graph Convolutional Neural
Networks Efficiently [29.457338893912656]
センシティブなグループに対する社会的バイアスは多くの実世界のグラフに存在するかもしれない。
本稿では,グラフ構造バイアス,ノード属性バイアス,モデルパラメータがGCNの人口動態にどのように影響するかを詳細に分析する。
私たちの洞察は、3種類のバイアスを緩和するフレームワークであるFairSampleにつながります。
論文 参考訳(メタデータ) (2024-01-26T08:17:12Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
本稿では,GNNの逆写像に対する新しい,スケーラブルな近似による学習バイアスを軽減するために,ラベルの効率的な正規化手法,すなわちラベルのデコンボリューション(LD)を提案する。
実験では、LDはOpen Graphデータセットのベンチマークで最先端のメソッドを大幅に上回っている。
論文 参考訳(メタデータ) (2023-09-26T13:09:43Z) - Fairness-Aware Graph Neural Networks: A Survey [53.41838868516936]
グラフニューラルネットワーク(GNN)はその表現力と最先端の予測性能によってますます重要になっている。
GNNは、基礎となるグラフデータと基本的な集約メカニズムによって生じる公平性の問題に悩まされる。
本稿では,GNNの公平性向上のためのフェアネス手法の検討と分類を行う。
論文 参考訳(メタデータ) (2023-07-08T08:09:06Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Simple yet Effective Gradient-Free Graph Convolutional Networks [20.448409424929604]
近年,グラフ表現学習において線形化グラフニューラルネットワーク (GNN) が注目されている。
本稿では,過度な平滑化と消失する勾配現象を関連づけ,勾配のないトレーニングフレームワークを構築する。
提案手法は, ノード分類タスクにおいて, 深度や訓練時間を大幅に短縮して, より優れた, より安定した性能を実現する。
論文 参考訳(メタデータ) (2023-02-01T11:00:24Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
本稿では,グラフ間のGNNの事前学習プロセスの監視を目的とした,MentorGNNというエンドツーエンドモデルを提案する。
我々は、事前学習したGNNの一般化誤差に自然かつ解釈可能な上限を導出することにより、関係データ(グラフ)に対するドメイン適応の問題に新たな光を当てた。
論文 参考訳(メタデータ) (2022-08-21T15:12:08Z) - Discriminability of Single-Layer Graph Neural Networks [172.5042368548269]
グラフニューラルネットワーク(GNN)は、幅広い問題について有望な性能を示した。
本稿では, 識別可能性の特性に着目し, 安定グラフフィルタバンクへのポイントワイド非線形性の適用により, 高固有値コンテンツに対する識別能力が向上する条件を確立する。
論文 参考訳(メタデータ) (2020-10-17T18:52:34Z) - Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph
Link Prediction [69.1473775184952]
数発のアウトオブグラフリンク予測という現実的な問題を導入する。
我々は,新しいメタ学習フレームワークによってこの問題に対処する。
我々は,知識グラフの補完と薬物と薬物の相互作用予測のために,複数のベンチマークデータセット上でモデルを検証した。
論文 参考訳(メタデータ) (2020-06-11T17:42:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。