Masked Pre-trained Model Enables Universal Zero-shot Denoiser
- URL: http://arxiv.org/abs/2401.14966v1
- Date: Fri, 26 Jan 2024 15:58:57 GMT
- Title: Masked Pre-trained Model Enables Universal Zero-shot Denoiser
- Authors: Xiaoxiao Ma, Zhixiang Wei, Yi Jin, Pengyang Ling, Tianle Liu, Ben
Wang, Junkang Dai, Huaian Chen, Enhong Chen
- Abstract summary: We propose a novel zero-shot denoising paradigm, i.e., Masked Pre-train then Iterative fill (MPI)
MPI pre-trains a model with masking and fine-tunes it for denoising of a single image with unseen noise degradation.
Iterative filling is devised to efficiently fuse pre-trained knowledge for denoising.
- Score: 48.890384388203735
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we observe that the model, which is trained on vast general
images using masking strategy, has been naturally embedded with the
distribution knowledge regarding natural images, and thus spontaneously attains
the underlying potential for strong image denoising. Based on this observation,
we propose a novel zero-shot denoising paradigm, i.e., Masked Pre-train then
Iterative fill (MPI). MPI pre-trains a model with masking and fine-tunes it for
denoising of a single image with unseen noise degradation. Concretely, the
proposed MPI comprises two key procedures: 1) Masked Pre-training involves
training a model on multiple natural images with random masks to gather
generalizable representations, allowing for practical applications in varying
noise degradation and even in distinct image types. 2) Iterative filling is
devised to efficiently fuse pre-trained knowledge for denoising. Similar to but
distinct from pre-training, random masking is retained to bridge the gap, but
only the predicted parts covered by masks are assembled for efficiency, which
enables high-quality denoising within a limited number of iterations.
Comprehensive experiments across various noisy scenarios underscore the notable
advances of proposed MPI over previous approaches with a marked reduction in
inference time. Code is available at https://github.com/krennic999/MPI.git.
Related papers
- Self-Calibrated Variance-Stabilizing Transformations for Real-World Image Denoising [19.08732222562782]
Supervised deep learning has become the method of choice for image denoising.
We show that, contrary to popular belief, denoising networks specialized in the removal of Gaussian noise can be efficiently leveraged in favor of real-world image denoising.
arXiv Detail & Related papers (2024-07-24T16:23:46Z) - Score Priors Guided Deep Variational Inference for Unsupervised
Real-World Single Image Denoising [14.486289176696438]
We propose a score priors-guided deep variational inference, namely ScoreDVI, for practical real-world denoising.
We exploit a Non-$i.i.d$ Gaussian mixture model and variational noise posterior to model the real-world noise.
Our method outperforms other single image-based real-world denoising methods and achieves comparable performance to dataset-based unsupervised methods.
arXiv Detail & Related papers (2023-08-09T03:26:58Z) - Masked Image Training for Generalizable Deep Image Denoising [53.03126421917465]
We present a novel approach to enhance the generalization performance of denoising networks.
Our method involves masking random pixels of the input image and reconstructing the missing information during training.
Our approach exhibits better generalization ability than other deep learning models and is directly applicable to real-world scenarios.
arXiv Detail & Related papers (2023-03-23T09:33:44Z) - Representing Noisy Image Without Denoising [91.73819173191076]
Fractional-order Moments in Radon space (FMR) is designed to derive robust representation directly from noisy images.
Unlike earlier integer-order methods, our work is a more generic design taking such classical methods as special cases.
arXiv Detail & Related papers (2023-01-18T10:13:29Z) - Dual Adversarial Network: Toward Real-world Noise Removal and Noise
Generation [52.75909685172843]
Real-world image noise removal is a long-standing yet very challenging task in computer vision.
We propose a novel unified framework to deal with the noise removal and noise generation tasks.
Our method learns the joint distribution of the clean-noisy image pairs.
arXiv Detail & Related papers (2020-07-12T09:16:06Z) - Noise2Inpaint: Learning Referenceless Denoising by Inpainting Unrolling [2.578242050187029]
We introduce Noise2Inpaint (N2I), a training approach that recasts the denoising problem into a regularized image inpainting framework.
N2I performs successful denoising on real-world datasets, while better preserving details compared to its purely data-driven counterpart Noise2Self.
arXiv Detail & Related papers (2020-06-16T18:46:42Z) - Fully Unsupervised Diversity Denoising with Convolutional Variational
Autoencoders [81.30960319178725]
We propose DivNoising, a denoising approach based on fully convolutional variational autoencoders (VAEs)
First we introduce a principled way of formulating the unsupervised denoising problem within the VAE framework by explicitly incorporating imaging noise models into the decoder.
We show that such a noise model can either be measured, bootstrapped from noisy data, or co-learned during training.
arXiv Detail & Related papers (2020-06-10T21:28:13Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
Blind image denoising is an important yet very challenging problem in computer vision.
We propose a new variational inference method, which integrates both noise estimation and image denoising.
arXiv Detail & Related papers (2019-08-29T15:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.