Integrability and chaos in the quantum brachistochrone problem
- URL: http://arxiv.org/abs/2401.14986v2
- Date: Thu, 23 May 2024 09:45:10 GMT
- Title: Integrability and chaos in the quantum brachistochrone problem
- Authors: S. Malikis, V. Cheianov,
- Abstract summary: We introduce a family of completely integrable brachistochrone protocols, which arise from a judicious choice of the control Hamiltonian subset.
We demonstrate how the inherent stability of the completely integrable protocols makes them numerically tractable and therefore practicable.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The quantum brachistochrone problem addresses the fundamental challenge of achieving the quantum speed limit in applications aiming to realize a given unitary operation in a quantum system. Specifically, it looks into optimization of the transformation of quantum states through controlled Hamiltonians, which form a small subset in the space of the system's observables. Here we introduce a broad family of completely integrable brachistochrone protocols, which arise from a judicious choice of the control Hamiltonian subset. Furthermore, we demonstrate how the inherent stability of the completely integrable protocols makes them numerically tractable and therefore practicable as opposed to their non-integrable counterparts.
Related papers
- The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - Harnessing quantum chaos in spin-boson models for all-purpose quantum-enhanced sensing [4.327903548212366]
Many-body quantum chaos has immense potential as a tool to accelerate the preparation of entangled states.
We show that our approach is robust to technical noise and imperfections and thus opens new opportunities to exploit complex entangled states.
arXiv Detail & Related papers (2024-10-04T23:14:10Z) - Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Steady-state quantum chaos in open quantum systems [0.0]
We introduce the notion of steady-state quantum chaos as a general phenomenon in open quantum many-body systems.
Chaos and integrability in the steady state of an open quantum system are instead uniquely determined by the spectral structure of the time evolution generator.
We study steady-state chaos in the driven-dissipative Bose-Hubbard model, a paradigmatic example of out-of-equilibrium bosonic system without particle number conservation.
arXiv Detail & Related papers (2023-05-24T18:00:22Z) - Minimum-Time Quantum Control and the Quantum Brachistochrone Equation [3.0616044531734192]
We present the general solution to the full quantum brachistochrone equation.
We prove that the speed of evolution under constraints is reduced with respect to the unrestricted case.
We find that solving the quantum brachistochrone equation is closely connected to solving the dynamics of the Lagrange multipliers.
arXiv Detail & Related papers (2022-04-27T09:26:59Z) - Conservation-law-based global bounds to quantum optimal control [0.0]
We show that an integral-equation-based formulation of conservation laws in quantum dynamics leads to a framework for identifying fundamental limits to any quantum control scenario.
We demonstrate the utility of our bounds in three scenarios -- three-level driving, decoherence suppression, and maximum-fidelity gate implementations.
arXiv Detail & Related papers (2021-05-13T03:10:51Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Quantum chaos, equilibration and control in extremely short spin chains [0.0]
We show that quantum chaos reigns over the best degree of control achieved, even in small chains.
We discuss implications on quantum control experiments and show that quantum chaos reigns over the best degree of control achieved, even in small chains.
arXiv Detail & Related papers (2020-06-25T15:01:15Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.