論文の概要: Incorporating simulated spatial context information improves the effectiveness of contrastive learning models
- arxiv url: http://arxiv.org/abs/2401.15120v2
- Date: Wed, 27 Mar 2024 15:49:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 22:13:35.999440
- Title: Incorporating simulated spatial context information improves the effectiveness of contrastive learning models
- Title(参考訳): 擬似空間文脈情報の導入によるコントラスト学習モデルの有効性向上
- Authors: Lizhen Zhu, James Z. Wang, Wonseuk Lee, Brad Wyble,
- Abstract要約: 本稿では,既存のコントラスト学習手法を補完する,環境空間類似性(ESS)というユニークなアプローチを提案する。
ESSは部屋の分類や空間予測タスク、特に馴染みの無い環境での卓越した熟練を可能にします。
潜在的に変革的な応用は、ロボット工学から宇宙探査まで多岐にわたる。
- 参考スコア(独自算出の注目度): 1.4179832037924995
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual learning often occurs in a specific context, where an agent acquires skills through exploration and tracking of its location in a consistent environment. The historical spatial context of the agent provides a similarity signal for self-supervised contrastive learning. We present a unique approach, termed Environmental Spatial Similarity (ESS), that complements existing contrastive learning methods. Using images from simulated, photorealistic environments as an experimental setting, we demonstrate that ESS outperforms traditional instance discrimination approaches. Moreover, sampling additional data from the same environment substantially improves accuracy and provides new augmentations. ESS allows remarkable proficiency in room classification and spatial prediction tasks, especially in unfamiliar environments. This learning paradigm has the potential to enable rapid visual learning in agents operating in new environments with unique visual characteristics. Potentially transformative applications span from robotics to space exploration. Our proof of concept demonstrates improved efficiency over methods that rely on extensive, disconnected datasets.
- Abstract(参考訳): 視覚学習は、エージェントが一貫した環境でその位置の探索と追跡を通じてスキルを取得する、特定のコンテキストで発生することが多い。
エージェントの歴史的空間的文脈は、自己教師付きコントラスト学習のための類似性信号を提供する。
本稿では,既存のコントラスト学習手法を補完する,環境空間類似性(ESS)というユニークなアプローチを提案する。
シミュレーションされたフォトリアリスティックな環境のイメージを実験環境として使用することにより、ESSが従来のインスタンス識別手法より優れていることを示す。
さらに、同じ環境から追加データをサンプリングすることで、精度が大幅に向上し、新たな拡張が提供される。
ESSは部屋の分類や空間予測タスク、特に馴染みの無い環境での卓越した熟練を可能にします。
この学習パラダイムは、ユニークな視覚特性を持つ新しい環境で動作するエージェントにおいて、迅速な視覚学習を可能にする可能性がある。
潜在的に変革的な応用は、ロボット工学から宇宙探査まで多岐にわたる。
我々の概念実証は、広範囲で非連結なデータセットに依存する手法よりも効率が向上していることを示す。
関連論文リスト
- Robust Visual Imitation Learning with Inverse Dynamics Representations [32.806294517277976]
我々は,専門家環境と学習環境を整合させるために,逆ダイナミクス状態表現学習目標を開発する。
抽象状態表現を用いて、行動データと専門家データとの類似性を徹底的に測定する効果的な報酬関数を設計する。
提案手法は,ほとんどの環境においてほぼ熟練した性能を実現し,最先端のビジュアルIL法やロバストIL法を著しく上回っている。
論文 参考訳(メタデータ) (2023-10-22T11:47:35Z) - Improving Reinforcement Learning Efficiency with Auxiliary Tasks in
Non-Visual Environments: A Comparison [0.0]
本研究は,低次元非視覚的観察のための唯一の疎結合表現学習法である,我々の知識を最大限に活用して,一般的な補助課題と比較する。
その結果, 十分複雑な環境下では, 補助的タスクによる表現学習は, 性能向上にのみ寄与することがわかった。
論文 参考訳(メタデータ) (2023-10-06T13:22:26Z) - Hyperbolic Contrastive Learning [12.170564544949308]
本稿では,双曲空間における意味的関係を学習するための新しいコントラスト学習フレームワークを提案する。
提案手法は, 自己教師付き事前学習, 教師付き分類, ベースライン法よりも頑健な精度において, より良い結果が得られることを示す。
論文 参考訳(メタデータ) (2023-02-02T20:47:45Z) - Stochastic Coherence Over Attention Trajectory For Continuous Learning
In Video Streams [64.82800502603138]
本稿では,映像ストリーム中のピクセルワイズ表現を段階的かつ自律的に開発するための,ニューラルネットワークに基づく新しいアプローチを提案する。
提案手法は, 参加者の入場地を観察することで, エージェントが学習できる, 人間の様の注意機構に基づく。
実験では,3次元仮想環境を利用して,映像ストリームを観察することで,エージェントが物体の識別を学べることを示す。
論文 参考訳(メタデータ) (2022-04-26T09:52:31Z) - Visual Adversarial Imitation Learning using Variational Models [60.69745540036375]
逆関数仕様は、深い強化学習を通しての学習行動にとって大きな障害であり続けている。
望ましい行動の視覚的なデモンストレーションは、エージェントを教えるためのより簡単で自然な方法を示すことが多い。
変動モデルに基づく対向的模倣学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-07-16T00:15:18Z) - Zero-Shot Reinforcement Learning on Graphs for Autonomous Exploration
Under Uncertainty [6.42522897323111]
シミュレーション環境で高性能探査政策を自己学習するための枠組みを提案する。
本稿では,グラフニューラルネットワークと深層強化学習を併用した新しい手法を提案する。
論文 参考訳(メタデータ) (2021-05-11T02:42:17Z) - Geography-Aware Self-Supervised Learning [79.4009241781968]
異なる特徴により、標準ベンチマークにおけるコントラスト学習と教師あり学習の間には、非自明なギャップが持続していることが示される。
本稿では,リモートセンシングデータの空間的整合性を利用した新しいトレーニング手法を提案する。
提案手法は,画像分類,オブジェクト検出,セマンティックセグメンテーションにおけるコントラスト学習と教師あり学習のギャップを埋めるものである。
論文 参考訳(メタデータ) (2020-11-19T17:29:13Z) - Heterogeneous Contrastive Learning: Encoding Spatial Information for
Compact Visual Representations [183.03278932562438]
本稿では,エンコーディング段階に空間情報を加えることで,対照的な目的と強いデータ拡張操作の間の学習の不整合を緩和する効果的な手法を提案する。
提案手法は,視覚表現の効率を向上し,自己指導型視覚表現学習の今後の研究を刺激する鍵となるメッセージを提供する。
論文 参考訳(メタデータ) (2020-11-19T16:26:25Z) - Evidential Sparsification of Multimodal Latent Spaces in Conditional
Variational Autoencoders [63.46738617561255]
訓練された条件付き変分オートエンコーダの離散潜時空間をスパース化する問題を考察する。
顕在的理論を用いて、特定の入力条件から直接証拠を受け取る潜在クラスを特定し、そうでないクラスをフィルタリングする。
画像生成や人間の行動予測などの多様なタスクの実験により,提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2020-10-19T01:27:21Z) - Learning Invariant Representations for Reinforcement Learning without
Reconstruction [98.33235415273562]
本研究では,表現学習が画像などのリッチな観察からの強化学習を,ドメイン知識や画素再構成に頼ることなく促進する方法について検討する。
シミュレーションメトリクスは、連続MDPの状態間の振る舞いの類似性を定量化する。
修正された視覚的 MuJoCo タスクを用いてタスク関連情報を無視する手法の有効性を実証する。
論文 参考訳(メタデータ) (2020-06-18T17:59:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。