Integral Operator Approaches for Scattered Data Fitting on Spheres
- URL: http://arxiv.org/abs/2401.15294v3
- Date: Wed, 23 Oct 2024 08:06:25 GMT
- Title: Integral Operator Approaches for Scattered Data Fitting on Spheres
- Authors: Shao-Bo Lin,
- Abstract summary: We study the approximation performance of a class of weighted spectral filter algorithms.
We derive optimal Sobolev-type error estimates of weighted spectral filter algorithms.
- Score: 16.389581549801253
- License:
- Abstract: This paper focuses on scattered data fitting problems on spheres. We study the approximation performance of a class of weighted spectral filter algorithms, including Tikhonov regularization, Landaweber iteration, spectral cut-off, and iterated Tikhonov, in fitting noisy data with possibly unbounded random noise. For the analysis, we develop an integral operator approach that can be regarded as an extension of the widely used sampling inequality approach and norming set method in the community of scattered data fitting. After providing an equivalence between the operator differences and quadrature rules, we succeed in deriving optimal Sobolev-type error estimates of weighted spectral filter algorithms. Our derived error estimates do not suffer from the saturation phenomenon for Tikhonov regularization in the literature, native-space-barrier for existing error analysis and adapts to different embedding spaces. We also propose a divide-and-conquer scheme to equip weighted spectral filter algorithms to reduce their computational burden and present the optimal approximation error bounds.
Related papers
- Diffusion-based Semi-supervised Spectral Algorithm for Regression on Manifolds [2.0649432688817444]
We introduce a novel diffusion-based spectral algorithm to tackle regression analysis on high-dimensional data.
Our method uses the local estimation property of heat kernel, offering an adaptive, data-driven approach to overcome this obstacle.
Our algorithm performs in an entirely data-driven manner, operating directly within the intrinsic manifold structure of the data.
arXiv Detail & Related papers (2024-10-18T15:29:04Z) - Spatially-Aware Diffusion Models with Cross-Attention for Global Field Reconstruction with Sparse Observations [1.371691382573869]
We develop and enhance score-based diffusion models in field reconstruction tasks.
We introduce a condition encoding approach to construct a tractable mapping mapping between observed and unobserved regions.
We demonstrate the ability of the model to capture possible reconstructions and improve the accuracy of fused results.
arXiv Detail & Related papers (2024-08-30T19:46:23Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Weighted Spectral Filters for Kernel Interpolation on Spheres: Estimates
of Prediction Accuracy for Noisy Data [21.67168506689593]
We introduce a weighted spectral filter approach to reduce the condition number of the kernel matrix and then stabilize kernel.
Using a recently developed integral operator approach for spherical data analysis, we theoretically demonstrate that the proposed weighted spectral filter approach succeeds in breaking through the bottleneck of kernel.
We provide optimal approximation rates of the new method to show that our approach does not compromise the predicting accuracy.
arXiv Detail & Related papers (2024-01-16T13:46:10Z) - Optimal Algorithms for the Inhomogeneous Spiked Wigner Model [89.1371983413931]
We derive an approximate message-passing algorithm (AMP) for the inhomogeneous problem.
We identify in particular the existence of a statistical-to-computational gap where known algorithms require a signal-to-noise ratio bigger than the information-theoretic threshold to perform better than random.
arXiv Detail & Related papers (2023-02-13T19:57:17Z) - A Robust and Flexible EM Algorithm for Mixtures of Elliptical
Distributions with Missing Data [71.9573352891936]
This paper tackles the problem of missing data imputation for noisy and non-Gaussian data.
A new EM algorithm is investigated for mixtures of elliptical distributions with the property of handling potential missing data.
Experimental results on synthetic data demonstrate that the proposed algorithm is robust to outliers and can be used with non-Gaussian data.
arXiv Detail & Related papers (2022-01-28T10:01:37Z) - Optimizing Information-theoretical Generalization Bounds via Anisotropic
Noise in SGLD [73.55632827932101]
We optimize the information-theoretical generalization bound by manipulating the noise structure in SGLD.
We prove that with constraint to guarantee low empirical risk, the optimal noise covariance is the square root of the expected gradient covariance.
arXiv Detail & Related papers (2021-10-26T15:02:27Z) - Adaptive and Oblivious Randomized Subspace Methods for High-Dimensional
Optimization: Sharp Analysis and Lower Bounds [37.03247707259297]
A suitable adaptive subspace can be generated by sampling a correlated random matrix whose second order statistics mirror the input data.
We show that the relative error of the randomized approximations can be tightly characterized in terms of the spectrum of the data matrix.
Experimental results show that the proposed approach enables significant speed ups in a wide variety of machine learning and optimization problems.
arXiv Detail & Related papers (2020-12-13T13:02:31Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
We study methods that use a collection of random observations to compute approximate solutions by searching over a known low-dimensional subspace of the Hilbert space.
We show how our results precisely characterize the error of a class of temporal difference learning methods for the policy evaluation problem with linear function approximation.
arXiv Detail & Related papers (2020-12-09T20:19:32Z) - Spectral convergence of diffusion maps: improved error bounds and an
alternative normalisation [0.6091702876917281]
This paper uses new approaches to improve the error bounds in the model case where the distribution is supported on a hypertorus.
We match long-standing pointwise error bounds for both the spectral data and the norm convergence of the operator discretisation.
We also introduce an alternative normalisation for diffusion maps based on Sinkhorn weights.
arXiv Detail & Related papers (2020-06-03T04:23:43Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.