Weighted Spectral Filters for Kernel Interpolation on Spheres: Estimates
of Prediction Accuracy for Noisy Data
- URL: http://arxiv.org/abs/2401.08364v1
- Date: Tue, 16 Jan 2024 13:46:10 GMT
- Title: Weighted Spectral Filters for Kernel Interpolation on Spheres: Estimates
of Prediction Accuracy for Noisy Data
- Authors: Xiaotong Liu, Jinxin Wang, Di Wang and Shao-Bo Lin
- Abstract summary: We introduce a weighted spectral filter approach to reduce the condition number of the kernel matrix and then stabilize kernel.
Using a recently developed integral operator approach for spherical data analysis, we theoretically demonstrate that the proposed weighted spectral filter approach succeeds in breaking through the bottleneck of kernel.
We provide optimal approximation rates of the new method to show that our approach does not compromise the predicting accuracy.
- Score: 21.67168506689593
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Spherical radial-basis-based kernel interpolation abounds in image sciences
including geophysical image reconstruction, climate trends description and
image rendering due to its excellent spatial localization property and perfect
approximation performance. However, in dealing with noisy data, kernel
interpolation frequently behaves not so well due to the large condition number
of the kernel matrix and instability of the interpolation process. In this
paper, we introduce a weighted spectral filter approach to reduce the condition
number of the kernel matrix and then stabilize kernel interpolation. The main
building blocks of the proposed method are the well developed spherical
positive quadrature rules and high-pass spectral filters. Using a recently
developed integral operator approach for spherical data analysis, we
theoretically demonstrate that the proposed weighted spectral filter approach
succeeds in breaking through the bottleneck of kernel interpolation, especially
in fitting noisy data. We provide optimal approximation rates of the new method
to show that our approach does not compromise the predicting accuracy.
Furthermore, we conduct both toy simulations and two real-world data
experiments with synthetically added noise in geophysical image reconstruction
and climate image processing to verify our theoretical assertions and show the
feasibility of the weighted spectral filter approach.
Related papers
- A Bayesian Approach Toward Robust Multidimensional Ellipsoid-Specific Fitting [0.0]
This work presents a novel and effective method for fitting multidimensional ellipsoids to scattered data in the contamination of noise and outliers.
We incorporate a uniform prior distribution to constrain the search for primitive parameters within an ellipsoidal domain.
We apply it to a wide range of practical applications such as microscopy cell counting, 3D reconstruction, geometric shape approximation, and magnetometer calibration tasks.
arXiv Detail & Related papers (2024-07-27T14:31:51Z) - Closed-form Filtering for Non-linear Systems [83.91296397912218]
We propose a new class of filters based on Gaussian PSD Models, which offer several advantages in terms of density approximation and computational efficiency.
We show that filtering can be efficiently performed in closed form when transitions and observations are Gaussian PSD Models.
Our proposed estimator enjoys strong theoretical guarantees, with estimation error that depends on the quality of the approximation and is adaptive to the regularity of the transition probabilities.
arXiv Detail & Related papers (2024-02-15T08:51:49Z) - Integral Operator Approaches for Scattered Data Fitting on Spheres [16.389581549801253]
We study the approximation performance of a class of weighted spectral filter algorithms.
We derive optimal Sobolev-type error estimates of weighted spectral filter algorithms.
arXiv Detail & Related papers (2024-01-27T04:42:50Z) - Reconstruction of compressed spectral imaging based on global structure
and spectral correlation [17.35611893815407]
The proposed method uses the convolution kernel to operate the global image.
To solve the problem that convolutional sparse coding is insensitive to low frequency, the global total-variation (TV) constraint is added.
The proposed method improves the reconstruction quality by up to 7 dB in PSNR and 10% in SSIM.
arXiv Detail & Related papers (2022-10-27T14:31:02Z) - Computational Doob's h-transforms for Online Filtering of Discretely
Observed Diffusions [65.74069050283998]
We propose a computational framework to approximate Doob's $h$-transforms.
The proposed approach can be orders of magnitude more efficient than state-of-the-art particle filters.
arXiv Detail & Related papers (2022-06-07T15:03:05Z) - Hyperspectral Image Denoising Using Non-convex Local Low-rank and Sparse
Separation with Spatial-Spectral Total Variation Regularization [49.55649406434796]
We propose a novel non particular approach to robust principal component analysis for HSI denoising.
We develop accurate approximations to both rank and sparse components.
Experiments on both simulated and real HSIs demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2022-01-08T11:48:46Z) - HyperPCA: a Powerful Tool to Extract Elemental Maps from Noisy Data
Obtained in LIBS Mapping of Materials [7.648784748888189]
We introduce HyperPCA, a new analysis tool for hyperspectral images based on a sparse representation of the data.
We show that the method presents advantages both in quantity and quality of the information recovered, thus improving the physico-chemical characterisation of analysed surfaces.
arXiv Detail & Related papers (2021-11-30T07:52:44Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
We introduce a new scalable variational Gaussian process approximation which provides a high fidelity approximation while retaining general applicability.
We demonstrate that, on a range of regression and classification problems, our approach can exploit input space symmetries such as translations and reflections.
Notably, our approach achieves state-of-the-art results on CIFAR-10 among pure GP models.
arXiv Detail & Related papers (2021-06-10T18:17:57Z) - Regularization by Denoising Sub-sampled Newton Method for Spectral CT
Multi-Material Decomposition [78.37855832568569]
We propose to solve a model-based maximum-a-posterior problem to reconstruct multi-materials images with application to spectral CT.
In particular, we propose to solve a regularized optimization problem based on a plug-in image-denoising function.
We show numerical and experimental results for spectral CT materials decomposition.
arXiv Detail & Related papers (2021-03-25T15:20:10Z) - Kernel Interpolation of High Dimensional Scattered Data [22.857190042428922]
Data sites selected from modeling high-dimensional problems often appear scattered in non-paternalistic ways.
We propose and study in the current article a new framework to analyze kernel of high dimensional data, which features bounding approximation error by the spectrum of the underlying kernel matrix.
arXiv Detail & Related papers (2020-09-03T08:34:00Z) - Residual-Sparse Fuzzy $C$-Means Clustering Incorporating Morphological
Reconstruction and Wavelet frames [146.63177174491082]
Fuzzy $C$-Means (FCM) algorithm incorporates a morphological reconstruction operation and a tight wavelet frame transform.
We present an improved FCM algorithm by imposing an $ell_0$ regularization term on the residual between the feature set and its ideal value.
Experimental results reported for synthetic, medical, and color images show that the proposed algorithm is effective and efficient, and outperforms other algorithms.
arXiv Detail & Related papers (2020-02-14T10:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.