論文の概要: A Survey on 3D Skeleton Based Person Re-Identification: Approaches,
Designs, Challenges, and Future Directions
- arxiv url: http://arxiv.org/abs/2401.15296v1
- Date: Sat, 27 Jan 2024 04:52:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-01-30 19:02:26.176028
- Title: A Survey on 3D Skeleton Based Person Re-Identification: Approaches,
Designs, Challenges, and Future Directions
- Title(参考訳): 3次元骨格に基づく人物再同定に関する調査 : アプローチ,設計,課題,今後の方向性
- Authors: Haocong Rao, Chunyan Miao
- Abstract要約: 3Dスケルトンによる人物の再識別は、パターン認識コミュニティに大きな関心を惹きつける重要な研究分野である。
多くのアプリケーションシナリオにおいて顕著なアドバンテージを持つ3Dスケルトンに基づく人物再同定手法が近年提案されている。
本稿では,現在のSRIDアプローチ,モデル設計,課題,今後の方向性を体系的に調査する。
- 参考スコア(独自算出の注目度): 71.99165135905827
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Person re-identification via 3D skeletons is an important emerging research
area that triggers great interest in the pattern recognition community. With
distinctive advantages for many application scenarios, a great diversity of 3D
skeleton based person re-identification (SRID) methods have been proposed in
recent years, effectively addressing prominent problems in skeleton modeling
and feature learning. Despite recent advances, to the best of our knowledge,
little effort has been made to comprehensively summarize these studies and
their challenges. In this paper, we attempt to fill this gap by providing a
systematic survey on current SRID approaches, model designs, challenges, and
future directions. Specifically, we first formulate the SRID problem, and
propose a taxonomy of SRID research with a summary of benchmark datasets,
commonly-used model architectures, and an analytical review of different
methods' characteristics. Then, we elaborate on the design principles of SRID
models from multiple aspects to offer key insights for model improvement.
Finally, we identify critical challenges confronting current studies and
discuss several promising directions for future research of SRID.
- Abstract(参考訳): 3Dスケルトンによる人物の再識別は、パターン認識コミュニティに大きな関心を惹きつける重要な研究分野である。
多くの応用シナリオに特有な利点があるため、3dスケルトンベースの人物再同定(srid)法が近年提案されており、スケルトンモデリングと特徴学習の顕著な問題に効果的に取り組んでいる。
最近の進歩にもかかわらず、我々の知る限りでは、これらの研究と課題を包括的に要約する努力はほとんど行われていない。
本稿では,現在のSRIDアプローチ,モデル設計,課題,今後の方向性を体系的に調査することで,このギャップを埋めようとしている。
具体的には、まずSRID問題を定式化し、ベンチマークデータセット、一般的なモデルアーキテクチャ、異なる手法の特性の分析的なレビューをまとめたSRID研究の分類法を提案する。
次に、モデル改善のための重要な洞察を提供するために、複数の側面からSRIDモデルの設計原則を詳述する。
最後に,現在の研究に直面する重要な課題を特定し,今後のSRID研究の方向性について論じる。
関連論文リスト
- Multi-Modal Foundation Models for Computational Pathology: A Survey [32.25958653387204]
基礎モデルは、計算病理学(CPath)の強力なパラダイムとして登場した。
我々は、32の最先端マルチモーダル基盤モデルを、視覚言語、視覚知識グラフ、視覚生成表現の3つの主要なパラダイムに分類する。
病理学に適した28の利用可能なマルチモーダルデータセットを分析し、画像テキストペア、命令データセット、画像以外のモダリティペアにグループ化する。
論文 参考訳(メタデータ) (2025-03-12T06:03:33Z) - A Survey on All-in-One Image Restoration: Taxonomy, Evaluation and Future Trends [67.43992456058541]
画像復元(IR)とは、ノイズ、ぼかし、気象効果などの劣化を除去しながら、画像の視覚的品質を改善する過程である。
従来のIR手法は、一般的に特定の種類の劣化をターゲットとしており、複雑な歪みを伴う現実のシナリオにおいて、その効果を制限している。
オールインワン画像復元(AiOIR)パラダイムが登場し、複数の劣化タイプに順応的に対処する統一されたフレームワークを提供する。
論文 参考訳(メタデータ) (2024-10-19T11:11:09Z) - Deep Graph Anomaly Detection: A Survey and New Perspectives [86.84201183954016]
グラフ異常検出(GAD)は、異常なグラフインスタンス(ノード、エッジ、サブグラフ、グラフ)を特定することを目的とする。
ディープラーニングアプローチ、特にグラフニューラルネットワーク(GNN)は、GADにとって有望なパラダイムとして現れています。
論文 参考訳(メタデータ) (2024-09-16T03:05:11Z) - On the Element-Wise Representation and Reasoning in Zero-Shot Image Recognition: A Systematic Survey [82.49623756124357]
ゼロショット画像認識(ZSIR)は、目に見えない領域の認識と推論をモデルに与えることを目的としている。
本稿では,近年の素子ワイドZSIRの進歩について概説する。
まず、オブジェクト認識、合成認識、基礎モデルに基づくオープンワールド認識という3つの基本的なZSIRタスクを、統一された要素的視点に統合する。
論文 参考訳(メタデータ) (2024-08-09T05:49:21Z) - Self-Supervised Skeleton-Based Action Representation Learning: A Benchmark and Beyond [19.074841631219233]
自己教師付き学習(SSL)は骨格に基づく行動理解に有効であることが証明されている。
本稿では,自己教師型骨格に基づく行動表現学習に関する包括的調査を行う。
論文 参考訳(メタデータ) (2024-06-05T06:21:54Z) - Architecture Analysis and Benchmarking of 3D U-shaped Deep Learning Models for Thoracic Anatomical Segmentation [0.8897689150430447]
3次元U型モデルの変種に対する最初の系統的ベンチマーク研究を行う。
本研究では,異なる注意機構,解像度ステージ数,ネットワーク構成がセグメンテーション精度および計算複雑性に与える影響について検討した。
論文 参考訳(メタデータ) (2024-02-05T17:43:02Z) - Geometric Deep Learning for Structure-Based Drug Design: A Survey [83.87489798671155]
構造に基づく薬物設計(SBDD)は、タンパク質の3次元幾何学を利用して、潜在的な薬物候補を特定する。
近年の幾何学的深層学習の進歩は、3次元幾何学的データを効果的に統合・処理し、この分野を前進させてきた。
論文 参考訳(メタデータ) (2023-06-20T14:21:58Z) - Human Body Pose Estimation for Gait Identification: A Comprehensive
Survey of Datasets and Models [4.17510581764131]
個人識別は特にセキュリティ領域において大きな注目を集めている問題である。
顔画像、シルエット画像、ウェアラブルセンサーの利用など、人物識別に対処するいくつかのレビュー研究がある。
従来のアプローチの課題を克服しながら、骨格に基づく人物識別が人気を博しているが、既存の調査では歩行識別に対する骨格に基づくアプローチの包括的なレビューが欠如している。
論文 参考訳(メタデータ) (2023-05-23T07:30:00Z) - Recent Few-Shot Object Detection Algorithms: A Survey with Performance
Comparison [54.357707168883024]
Few-Shot Object Detection (FSOD)は、人間の学習能力を模倣する。
FSODは、学習した汎用オブジェクトの知識を共通のヘビーテールから新しいロングテールオブジェクトクラスにインテリジェントに転送する。
本稿では,問題定義,共通データセット,評価プロトコルなどを含むFSODの概要を紹介する。
論文 参考訳(メタデータ) (2022-03-27T04:11:28Z) - Person Re-identification: A Retrospective on Domain Specific Open
Challenges and Future Trends [2.4907242954727926]
人物再識別(Re-ID)は、自動化された視覚監視システムの主要な構成要素の1つである。
オーバーラップしない視野を持つマルチカメラネットワーク内の人物を自動的に識別・検索することを目的としている。
論文 参考訳(メタデータ) (2022-02-26T11:55:57Z) - Deep Learning meets Liveness Detection: Recent Advancements and
Challenges [3.2011056280404637]
我々は,2017年以降の深部機能的FAS手法に関する文献を包括的に調査している。
本研究では,FASの時系列,進化過程,評価基準について概説する。
論文 参考訳(メタデータ) (2021-12-29T19:24:58Z) - Recent Progress in Appearance-based Action Recognition [73.6405863243707]
アクション認識は、ビデオ内の様々な人間の行動を特定するタスクである。
最近の外見に基づく手法は、正確な行動認識に向けて有望な進歩を遂げている。
論文 参考訳(メタデータ) (2020-11-25T10:18:12Z) - View-Invariant Gait Recognition with Attentive Recurrent Learning of
Partial Representations [27.33579145744285]
本稿では,まず,フレームレベルの畳み込み特徴から歩行畳み込みエネルギーマップ(GCEM)を抽出するネットワークを提案する。
次に、GCEMの分割されたビンから学ぶために双方向ニューラルネットワークを採用し、学習された部分的リカレント表現の関係を利用する。
提案手法は2つの大規模CASIA-BとOU-Mの歩行データセットで広範囲に検証されている。
論文 参考訳(メタデータ) (2020-10-18T20:20:43Z) - Deep Model-Based Reinforcement Learning for High-Dimensional Problems, a
Survey [1.2031796234206134]
モデルに基づく強化学習は、環境サンプルの必要性を減らすために、環境力学の明示的なモデルを生成する。
深層モデルに基づく手法の課題は、低いサンプルの複雑さを維持しながら高い予測力を達成することである。
本稿では, 与えられた遷移を明示的に計画すること, 学習した遷移を明示的に計画すること, 計画と遷移の両方をエンドツーエンドで学習することの3つのアプローチに基づく分類法を提案する。
論文 参考訳(メタデータ) (2020-08-11T08:49:04Z) - A Comprehensive Study on Temporal Modeling for Online Action Detection [50.558313106389335]
オンライン行動検出(OAD)は実用的だが難しい課題であり、近年注目を集めている。
本稿では,4種類の時間的モデリング手法を含むOADの時間的モデリングに関する総合的研究を提案する。
本稿では,THUMOS-14 と TVSeries に対して,近年の最先端手法よりも大きなマージンを有するハイブリッド時間モデルを提案する。
論文 参考訳(メタデータ) (2020-01-21T13:12:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。