Architecture Analysis and Benchmarking of 3D U-shaped Deep Learning Models for Thoracic Anatomical Segmentation
- URL: http://arxiv.org/abs/2402.03230v2
- Date: Thu, 14 Mar 2024 20:11:10 GMT
- Title: Architecture Analysis and Benchmarking of 3D U-shaped Deep Learning Models for Thoracic Anatomical Segmentation
- Authors: Arash Harirpoush, Amirhossein Rasoulian, Marta Kersten-Oertel, Yiming Xiao,
- Abstract summary: We conduct the first systematic benchmark study for variants of 3D U-shaped models.
Our study examines the impact of different attention mechanisms, the number of resolution stages, and network configurations on segmentation accuracy and computational complexity.
- Score: 0.8897689150430447
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent rising interests in patient-specific thoracic surgical planning and simulation require efficient and robust creation of digital anatomical models from automatic medical image segmentation algorithms. Deep learning (DL) is now state-of-the-art in various radiological tasks, and U-shaped DL models have particularly excelled in medical image segmentation since the inception of the 2D UNet. To date, many variants of U-shaped models have been proposed by the integration of different attention mechanisms and network configurations. Systematic benchmark studies which analyze the architecture of these models by leveraging the recent development of the multi-label databases, can provide valuable insights for clinical deployment and future model designs, but such studies are still rare. We conduct the first systematic benchmark study for variants of 3D U-shaped models (3DUNet, STUNet, AttentionUNet, SwinUNETR, FocalSegNet, and a novel 3D SwinUnet with four variants) with a focus on CT-based anatomical segmentation for thoracic surgery. Our study systematically examines the impact of different attention mechanisms, the number of resolution stages, and network configurations on segmentation accuracy and computational complexity. To allow cross-reference with other recent benchmarking studies, we also included a performance assessment of the BTCV abdominal structural segmentation. With the STUNet ranking at the top, our study demonstrated the value of CNN-based U-shaped models for the investigated tasks and the benefit of residual blocks in network configuration designs to boost segmentation performance.
Related papers
- ShapeMamba-EM: Fine-Tuning Foundation Model with Local Shape Descriptors and Mamba Blocks for 3D EM Image Segmentation [49.42525661521625]
This paper presents ShapeMamba-EM, a specialized fine-tuning method for 3D EM segmentation.
It is tested over a wide range of EM images, covering five segmentation tasks and 10 datasets.
arXiv Detail & Related papers (2024-08-26T08:59:22Z) - Implantable Adaptive Cells: differentiable architecture search to improve the performance of any trained U-shaped network [0.0]
This paper introduces a novel approach to enhance the performance of pre-trained neural networks in medical image segmentation.
We present the concept of Implantable Adaptive Cell (IAC), small but powerful modules identified through Partially-Connected DARTS.
Our strategy allows for the seamless integration of the IAC into the pre-existing architecture, thereby enhancing its performance without necessitating a complete retraining from scratch.
arXiv Detail & Related papers (2024-05-06T12:40:15Z) - Teaching AI the Anatomy Behind the Scan: Addressing Anatomical Flaws in Medical Image Segmentation with Learnable Prior [34.54360931760496]
Key anatomical features, such as the number of organs, their shapes and relative positions, are crucial for building a robust multi-organ segmentation model.
We introduce a novel architecture called the Anatomy-Informed Network (AIC-Net)
AIC-Net incorporates a learnable input termed "Anatomical Prior", which can be adapted to patient-specific anatomy.
arXiv Detail & Related papers (2024-03-27T10:46:24Z) - Unlocking the Heart Using Adaptive Locked Agnostic Networks [4.613517417540153]
Supervised training of deep learning models for medical imaging applications requires a significant amount of labeled data.
To address this limitation, we introduce the Adaptive Locked Agnostic Network (ALAN)
ALAN involves self-supervised visual feature extraction using a large backbone model to produce robust semantic self-segmentation.
Our findings demonstrate that the self-supervised backbone model robustly identifies anatomical subregions of the heart in an apical four-chamber view.
arXiv Detail & Related papers (2023-09-21T09:06:36Z) - LegoNet: Alternating Model Blocks for Medical Image Segmentation [0.7550390281305251]
We propose to alternate structurally different types of blocks to generate a new architecture, mimicking how Lego blocks can be assembled together.
Using two CNN-based and one SwinViT-based blocks, we investigate three variations to the so-called LegoNet that applies the new concept of block alternation for the segmentation task in medical imaging.
arXiv Detail & Related papers (2023-06-06T08:22:47Z) - S3M: Scalable Statistical Shape Modeling through Unsupervised
Correspondences [91.48841778012782]
We propose an unsupervised method to simultaneously learn local and global shape structures across population anatomies.
Our pipeline significantly improves unsupervised correspondence estimation for SSMs compared to baseline methods.
Our method is robust enough to learn from noisy neural network predictions, potentially enabling scaling SSMs to larger patient populations.
arXiv Detail & Related papers (2023-04-15T09:39:52Z) - IterMiUnet: A lightweight architecture for automatic blood vessel
segmentation [10.538564380139483]
This paper proposes IterMiUnet, a new lightweight convolution-based segmentation model.
It overcomes its heavily parametrized nature by incorporating the encoder-decoder structure of MiUnet model within it.
The proposed model has a lot of potential to be utilized as a tool for the early diagnosis of many diseases.
arXiv Detail & Related papers (2022-08-02T14:33:14Z) - Deep Implicit Statistical Shape Models for 3D Medical Image Delineation [47.78425002879612]
3D delineation of anatomical structures is a cardinal goal in medical imaging analysis.
Prior to deep learning, statistical shape models that imposed anatomical constraints and produced high quality surfaces were a core technology.
We present deep implicit statistical shape models (DISSMs), a new approach to delineation that marries the representation power of CNNs with the robustness of SSMs.
arXiv Detail & Related papers (2021-04-07T01:15:06Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
We propose a two-stream graph convolutional network (TSGCNet) to learn multi-view information from different geometric attributes.
We evaluate our proposed TSGCNet on a real-patient dataset of dental models acquired by 3D intraoral scanners.
arXiv Detail & Related papers (2020-12-26T08:02:56Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Domain Shift in Computer Vision models for MRI data analysis: An
Overview [64.69150970967524]
Machine learning and computer vision methods are showing good performance in medical imagery analysis.
Yet only a few applications are now in clinical use.
Poor transferability of themodels to data from different sources or acquisition domains is one of the reasons for that.
arXiv Detail & Related papers (2020-10-14T16:34:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.