Multi-Robot Relative Pose Estimation in SE(2) with Observability
Analysis: A Comparison of Extended Kalman Filtering and Robust Pose Graph
Optimization
- URL: http://arxiv.org/abs/2401.15313v3
- Date: Sun, 4 Feb 2024 14:51:59 GMT
- Title: Multi-Robot Relative Pose Estimation in SE(2) with Observability
Analysis: A Comparison of Extended Kalman Filtering and Robust Pose Graph
Optimization
- Authors: Kihoon Shin, Hyunjae Sim, Seungwon Nam, Yonghee Kim, Jae Hu and
Kwang-Ki K. Kim
- Abstract summary: We focus on cooperative localization and observability analysis of relative pose estimation.
For ROS/Gazebo simulations, we explore four sensing and communication structures.
In hardware experiments, two Turtlebot3 equipped with UWB modules are used for real-world inter-robot relative pose estimation.
- Score: 1.0485739694839669
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this study, we address multi-robot localization issues, with a specific
focus on cooperative localization and observability analysis of relative pose
estimation. Cooperative localization involves enhancing each robot's
information through a communication network and message passing. If odometry
data from a target robot can be transmitted to the ego robot, observability of
their relative pose estimation can be achieved through range-only or
bearing-only measurements, provided both robots have non-zero linear
velocities. In cases where odometry data from a target robot are not directly
transmitted but estimated by the ego robot, both range and bearing measurements
are necessary to ensure observability of relative pose estimation. For
ROS/Gazebo simulations, we explore four sensing and communication structures.
We compare extended Kalman filtering (EKF) and pose graph optimization (PGO)
estimation using different robust loss functions (filtering and smoothing with
varying batch sizes of sliding windows) in terms of estimation accuracy. In
hardware experiments, two Turtlebot3 equipped with UWB modules are used for
real-world inter-robot relative pose estimation, applying both EKF and PGO and
comparing their performance.
Related papers
- GISR: Geometric Initialization and Silhouette-based Refinement for Single-View Robot Pose and Configuration Estimation [0.0]
GISR is a robot-to-camera pose estimation method that prioritizes execution in real-time.
We evaluate GISR on publicly available data and show that it outperforms existing methods of the same class in terms of both speed and accuracy.
arXiv Detail & Related papers (2024-05-08T08:39:25Z) - OptiState: State Estimation of Legged Robots using Gated Networks with Transformer-based Vision and Kalman Filtering [42.817893456964]
State estimation for legged robots is challenging due to their highly dynamic motion and limitations imposed by sensor accuracy.
We propose a hybrid solution that combines proprioception and exteroceptive information for estimating the state of the robot's trunk.
This framework not only furnishes accurate robot state estimates, but can minimize the nonlinear errors that arise from sensor measurements and model simplifications through learning.
arXiv Detail & Related papers (2024-01-30T03:34:25Z) - Towards a Unified Transformer-based Framework for Scene Graph Generation
and Human-object Interaction Detection [116.21529970404653]
We introduce SG2HOI+, a unified one-step model based on the Transformer architecture.
Our approach employs two interactive hierarchical Transformers to seamlessly unify the tasks of SGG and HOI detection.
Our approach achieves competitive performance when compared to state-of-the-art HOI methods.
arXiv Detail & Related papers (2023-11-03T07:25:57Z) - Nonprehensile Riemannian Motion Predictive Control [57.295751294224765]
We introduce a novel Real-to-Sim reward analysis technique to reliably imagine and predict the outcome of taking possible actions for a real robotic platform.
We produce a closed-loop controller to reactively push objects in a continuous action space.
We observe that RMPC is robust in cluttered as well as occluded environments and outperforms the baselines.
arXiv Detail & Related papers (2021-11-15T18:50:04Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal.
We use model predictive control (SMPC) to calculate control inputs that satisfy robot dynamics, and consider uncertainty during obstacle avoidance with chance constraints.
recurrent neural networks are used to provide a quick estimate of future state uncertainty considered in the SMPC finite-time horizon solution.
A Deep Q-learning agent is employed to serve as a high-level path planner, providing the SMPC with target positions that move the robots towards a desired global goal.
arXiv Detail & Related papers (2021-08-03T02:56:21Z) - Relative Localization of Mobile Robots with Multiple Ultra-WideBand
Ranging Measurements [15.209043435869189]
We propose an approach to estimate the relative pose between a group of robots by equipping each robot with multiple UWB ranging nodes.
To improve the localization accuracy, we propose to utilize the odometry constraints through a sliding window-based optimization.
arXiv Detail & Related papers (2021-07-19T12:57:02Z) - Kimera-Multi: Robust, Distributed, Dense Metric-Semantic SLAM for
Multi-Robot Systems [92.26462290867963]
Kimera-Multi is the first multi-robot system that is robust and capable of identifying and rejecting incorrect inter and intra-robot loop closures.
We demonstrate Kimera-Multi in photo-realistic simulations, SLAM benchmarking datasets, and challenging outdoor datasets collected using ground robots.
arXiv Detail & Related papers (2021-06-28T03:56:40Z) - Distributed Visual-Inertial Cooperative Localization [32.49338004445954]
We present a consistent and distributed state estimator for multi-robot cooperative localization (CL)
In particular, we leverage covariance intersection (CI) to allow each robot to only track its own state and autocovariance.
The proposed distributed CL estimator is validated against its naive non-realtime centralized counterpart extensively in both simulations and real-world experiments.
arXiv Detail & Related papers (2021-03-23T18:12:07Z) - Domain Adaptive Robotic Gesture Recognition with Unsupervised
Kinematic-Visual Data Alignment [60.31418655784291]
We propose a novel unsupervised domain adaptation framework which can simultaneously transfer multi-modality knowledge, i.e., both kinematic and visual data, from simulator to real robot.
It remedies the domain gap with enhanced transferable features by using temporal cues in videos, and inherent correlations in multi-modal towards recognizing gesture.
Results show that our approach recovers the performance with great improvement gains, up to 12.91% in ACC and 20.16% in F1score without using any annotations in real robot.
arXiv Detail & Related papers (2021-03-06T09:10:03Z) - Online Body Schema Adaptation through Cost-Sensitive Active Learning [63.84207660737483]
The work was implemented in a simulation environment, using the 7DoF arm of the iCub robot simulator.
A cost-sensitive active learning approach is used to select optimal joint configurations.
The results show cost-sensitive active learning has similar accuracy to the standard active learning approach, while reducing in about half the executed movement.
arXiv Detail & Related papers (2021-01-26T16:01:02Z) - Robots State Estimation and Observability Analysis Based on Statistical
Motion Models [10.941793802354953]
This paper presents a generic motion model to capture mobile robots' dynamic behaviors (translation and rotation)
The model is based on statistical models driven by white random processes and is formulated into a full state estimation algorithm based on the error-state extended Kalman filtering framework (ESEKF)
A novel texttextbfitthin set concept is introduced to characterize the unobservable subset of the system states.
arXiv Detail & Related papers (2020-10-12T18:35:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.