BrepGen: A B-rep Generative Diffusion Model with Structured Latent Geometry
- URL: http://arxiv.org/abs/2401.15563v3
- Date: Sun, 03 Nov 2024 18:04:52 GMT
- Title: BrepGen: A B-rep Generative Diffusion Model with Structured Latent Geometry
- Authors: Xiang Xu, Joseph G. Lambourne, Pradeep Kumar Jayaraman, Zhengqing Wang, Karl D. D. Willis, Yasutaka Furukawa,
- Abstract summary: BrepGen is a diffusion-based generative approach that directly outputs a Boundary representation (Brep) Computer-Aided Design (CAD) model.
BrepGen represents a B-rep model as a novel structured latent geometry in a hierarchical tree.
- Score: 24.779824909395245
- License:
- Abstract: This paper presents BrepGen, a diffusion-based generative approach that directly outputs a Boundary representation (B-rep) Computer-Aided Design (CAD) model. BrepGen represents a B-rep model as a novel structured latent geometry in a hierarchical tree. With the root node representing a whole CAD solid, each element of a B-rep model (i.e., a face, an edge, or a vertex) progressively turns into a child-node from top to bottom. B-rep geometry information goes into the nodes as the global bounding box of each primitive along with a latent code describing the local geometric shape. The B-rep topology information is implicitly represented by node duplication. When two faces share an edge, the edge curve will appear twice in the tree, and a T-junction vertex with three incident edges appears six times in the tree with identical node features. Starting from the root and progressing to the leaf, BrepGen employs Transformer-based diffusion models to sequentially denoise node features while duplicated nodes are detected and merged, recovering the B-Rep topology information. Extensive experiments show that BrepGen advances the task of CAD B-rep generation, surpassing existing methods on various benchmarks. Results on our newly collected furniture dataset further showcase its exceptional capability in generating complicated geometry. While previous methods were limited to generating simple prismatic shapes, BrepGen incorporates free-form and doubly-curved surfaces for the first time. Additional applications of BrepGen include CAD autocomplete and design interpolation. The code, pretrained models, and dataset are available at https://github.com/samxuxiang/BrepGen.
Related papers
- Split-and-Fit: Learning B-Reps via Structure-Aware Voronoi Partitioning [50.684254969269546]
We introduce a novel method for acquiring boundary representations (B-Reps) of 3D CAD models.
We apply a spatial partitioning to derive a single primitive within each partition.
We show that our network, coined NVD-Net for neural Voronoi diagrams, can effectively learn Voronoi partitions for CAD models from training data.
arXiv Detail & Related papers (2024-06-07T21:07:49Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
We propose a novel heterogeneous graph neural network with sequential node representation, namely Seq-HGNN.
We conduct extensive experiments on four widely used datasets from Heterogeneous Graph Benchmark (HGB) and Open Graph Benchmark (OGB)
arXiv Detail & Related papers (2023-05-18T07:27:18Z) - SolidGen: An Autoregressive Model for Direct B-rep Synthesis [15.599363091502365]
Boundary representation (B-rep) format is de-facto shape representation in computer-aided design (CAD)
Recent approaches to generating CAD models have focused on learning sketch-and-extrude modeling sequences.
We present a new approach that enables learning from and synthesizing B-reps without the need for supervision.
arXiv Detail & Related papers (2022-03-26T00:00:45Z) - Learning Mesh Representations via Binary Space Partitioning Tree
Networks [28.962866472806812]
We present BSP-Net, a network that learns to represent a 3D shape via convex decomposition without supervision.
The network is trained to reconstruct a shape using a set of convexes obtained from a BSP-tree built over a set of planes, where the planes and convexes are both defined by learned network weights.
The generated meshes are watertight, compact (i.e., low-poly), and well suited to represent sharp geometry.
arXiv Detail & Related papers (2021-06-27T16:37:54Z) - NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One
Go [109.88509362837475]
We present NeuroMorph, a new neural network architecture that takes as input two 3D shapes.
NeuroMorph produces smooth and point-to-point correspondences between them.
It works well for a large variety of input shapes, including non-isometric pairs from different object categories.
arXiv Detail & Related papers (2021-06-17T12:25:44Z) - BRepNet: A topological message passing system for solid models [6.214548392474976]
Boundary representation (B-rep) models are the standard way 3D shapes are described in Computer-Aided Design (CAD) applications.
We introduce BRepNet, a neural network architecture designed to operate directly on B-rep data structures.
arXiv Detail & Related papers (2021-04-01T18:16:03Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
We propose a two-stream graph convolutional network (TSGCNet) to learn multi-view information from different geometric attributes.
We evaluate our proposed TSGCNet on a real-patient dataset of dental models acquired by 3D intraoral scanners.
arXiv Detail & Related papers (2020-12-26T08:02:56Z) - UV-Net: Learning from Boundary Representations [17.47054752280569]
We introduce UV-Net, a novel neural network architecture and representation designed to operate directly on Boundary representation (B-rep) data from 3D CAD models.
B-rep data presents some unique challenges when used with modern machine learning due to the complexity of the data structure and its support for both continuous non-Euclidean geometric entities and discrete topological entities.
arXiv Detail & Related papers (2020-06-18T00:12:52Z) - PT2PC: Learning to Generate 3D Point Cloud Shapes from Part Tree
Conditions [66.87405921626004]
This paper investigates the novel problem of generating 3D shape point cloud geometry from a symbolic part tree representation.
We propose a conditional GAN "part tree"-to-"point cloud" model (PT2PC) that disentangles the structural and geometric factors.
arXiv Detail & Related papers (2020-03-19T08:27:25Z) - PUGeo-Net: A Geometry-centric Network for 3D Point Cloud Upsampling [103.09504572409449]
We propose a novel deep neural network based method, called PUGeo-Net, to generate uniform dense point clouds.
Thanks to its geometry-centric nature, PUGeo-Net works well for both CAD models with sharp features and scanned models with rich geometric details.
arXiv Detail & Related papers (2020-02-24T14:13:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.