論文の概要: Hyperedge Interaction-aware Hypergraph Neural Network
- arxiv url: http://arxiv.org/abs/2401.15587v2
- Date: Fri, 5 Apr 2024 10:32:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-08 18:25:45.595826
- Title: Hyperedge Interaction-aware Hypergraph Neural Network
- Title(参考訳): ハイパーエッジ相互作用を考慮したハイパーグラフニューラルネットワーク
- Authors: Rongping Ye, Xiaobing Pei, Haoran Yang, Ruiqi Wang,
- Abstract要約: HeIHNNはハイパーエッジインタラクションを意識したハイパーグラフニューラルネットワークである。
本稿では,ハイパーエッジとノード間の情報フローを向上させる新しいメカニズムを提案する。
- 参考スコア(独自算出の注目度): 11.359757898963284
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hypergraphs provide an effective modeling approach for modeling high-order relationships in many real-world datasets. To capture such complex relationships, several hypergraph neural networks have been proposed for learning hypergraph structure, which propagate information from nodes to hyperedges and then from hyperedges back to nodes. However, most existing methods focus on information propagation between hyperedges and nodes, neglecting the interactions among hyperedges themselves. In this paper, we propose HeIHNN, a hyperedge interaction-aware hypergraph neural network, which captures the interactions among hyperedges during the convolution process and introduce a novel mechanism to enhance information flow between hyperedges and nodes. Specifically, HeIHNN integrates the interactions between hyperedges into the hypergraph convolution by constructing a three-stage information propagation process. After propagating information from nodes to hyperedges, we introduce a hyperedge-level convolution to update the hyperedge embeddings. Finally, the embeddings that capture rich information from the interaction among hyperedges will be utilized to update the node embeddings. Additionally, we introduce a hyperedge outlier removal mechanism in the information propagation stages between nodes and hyperedges, which dynamically adjusts the hypergraph structure using the learned embeddings, effectively removing outliers. Extensive experiments conducted on real-world datasets show the competitive performance of HeIHNN compared with state-of-the-art methods.
- Abstract(参考訳): ハイパーグラフは、多くの実世界のデータセットで高次関係をモデリングするための効果的なモデリング手法を提供する。
このような複雑な関係を捉えるために、ハイパーグラフ構造を学ぶためにいくつかのハイパーグラフニューラルネットワークが提案されている。
しかし、既存のほとんどの手法はハイパーエッジとノード間の情報伝達に重点を置いており、ハイパーエッジ間の相互作用を無視している。
本稿では、畳み込み過程におけるハイパーエッジ間の相互作用をキャプチャするハイパーエッジインタラクション対応ハイパーグラフニューラルネットワークであるHeIHNNを提案し、ハイパーエッジとノード間の情報フローを強化する新しいメカニズムを提案する。
具体的には、ハイパーエッジ間の相互作用をハイパーグラフ畳み込みに統合し、3段階の情報伝達プロセスを構築する。
ノードからハイパーエッジへの情報を伝達した後、ハイパーエッジレベルの畳み込みを導入し、ハイパーエッジ埋め込みを更新する。
最後に、ハイパーエッジ間のインタラクションから豊富な情報をキャプチャする埋め込みを使用して、ノードの埋め込みを更新する。
さらに,ノードとハイパーエッジ間の情報伝達段階におけるハイパーエッジ・アウトレイラ除去機構を導入し,学習した埋め込みを用いてハイパーグラフ構造を動的に調整し,アウトレイラを効果的に除去する。
実世界のデータセットで実施された大規模な実験は、最先端の手法と比較してHeIHNNの競合性能を示している。
関連論文リスト
- Hypergraph Transformer for Semi-Supervised Classification [50.92027313775934]
我々は新しいハイパーグラフ学習フレームワークHyperGraph Transformer(HyperGT)を提案する。
HyperGTはTransformerベースのニューラルネットワークアーキテクチャを使用して、すべてのノードとハイパーエッジのグローバル相関を効果的に検討する。
局所接続パターンを保ちながら、グローバルな相互作用を効果的に組み込むことで、包括的なハイパーグラフ表現学習を実現する。
論文 参考訳(メタデータ) (2023-12-18T17:50:52Z) - From Hypergraph Energy Functions to Hypergraph Neural Networks [94.88564151540459]
パラメータ化されたハイパーグラフ正規化エネルギー関数の表現型族を示す。
次に、これらのエネルギーの最小化がノード埋め込みとして効果的に機能することを実証する。
提案した双レベルハイパーグラフ最適化と既存のGNNアーキテクチャを共通的に用いている。
論文 参考訳(メタデータ) (2023-06-16T04:40:59Z) - Tensorized Hypergraph Neural Networks [69.65385474777031]
我々は,新しいアジャケーシテンソルベースのtextbfTensorized textbfHypergraph textbfNeural textbfNetwork (THNN) を提案する。
THNNは高次外装機能パッシングメッセージを通じて、忠実なハイパーグラフモデリングフレームワークである。
3次元視覚オブジェクト分類のための2つの広く使われているハイパーグラフデータセットの実験結果から、モデルの有望な性能を示す。
論文 参考訳(メタデータ) (2023-06-05T03:26:06Z) - A Hypergraph Neural Network Framework for Learning Hyperedge-Dependent
Node Embeddings [39.9678554461845]
ハイパーグラフニューラルネットワーク(HNN)と呼ばれるハイパーグラフ表現学習フレームワークを導入する。
HNNはハイパーグラフの各ノードに対するハイパーエッジ依存の埋め込みセットとともに、ハイパーエッジ埋め込みを共同で学習する。
HNNは全ベースラインモデルとハイパーエッジ予測およびハイパーグラフノード分類のためのグラフで7.72%と11.37%の全体平均ゲインを達成した。
論文 参考訳(メタデータ) (2022-12-28T19:45:38Z) - Augmentations in Hypergraph Contrastive Learning: Fabricated and
Generative [126.0985540285981]
我々は、ハイパーグラフニューラルネットワークの一般化性を改善するために、画像/グラフからの対照的な学習アプローチ(ハイパーGCLと呼ぶ)を適用する。
我々は、高次関係を符号化したハイパーエッジを増大させる2つのスキームを作成し、グラフ構造化データから3つの拡張戦略を採用する。
拡張ビューを生成するためのハイパーグラフ生成モデルを提案し、次に、ハイパーグラフ拡張とモデルパラメータを協調的に学習するエンド・ツー・エンドの微分可能なパイプラインを提案する。
論文 参考訳(メタデータ) (2022-10-07T20:12:20Z) - Equivariant Hypergraph Diffusion Neural Operators [81.32770440890303]
ハイパーグラフを符号化するためにニューラルネットワークを使用するハイパーグラフニューラルネットワーク(HNN)は、データの高次関係をモデル化する有望な方法を提供する。
本研究ではED-HNNと呼ばれる新しいHNNアーキテクチャを提案する。
実世界の9つのハイパーグラフデータセットのノード分類におけるED-HNNの評価を行った。
論文 参考訳(メタデータ) (2022-07-14T06:17:00Z) - Adaptive Neural Message Passing for Inductive Learning on Hypergraphs [21.606287447052757]
本稿では,新しいハイパーグラフ学習フレームワークHyperMSGを紹介する。
各ノードの次数集中度に関連する注意重みを学習することで、データとタスクに適応する。
堅牢で、幅広いタスクやデータセットで最先端のハイパーグラフ学習手法より優れています。
論文 参考訳(メタデータ) (2021-09-22T12:24:02Z) - Learnable Hypergraph Laplacian for Hypergraph Learning [34.28748027233654]
HyperGraph Convolutional Neural Networks (HGCNN) は、グラフ構造化データに保存された高次関係をモデル化する可能性を示した。
我々はHypERgrAph Laplacian aDaptor(HERALD)と呼ばれる適応的なハイパーグラフ構造を構築するための最初の学習ベース手法を提案する。
HERALDは、ハイパーノードとハイパーエッジの隣接関係をエンドツーエンドで適応的に最適化し、タスク認識ハイパーグラフを学習する。
論文 参考訳(メタデータ) (2021-06-12T02:07:07Z) - Learnable Hypergraph Laplacian for Hypergraph Learning [34.28748027233654]
HyperGraph Convolutional Neural Networks (HGCNN) は、グラフ構造化データに保存された高次関係をモデル化する可能性を示した。
我々はHypERgrAph Laplacian aDaptor(HERALD)と呼ばれる適応的なハイパーグラフ構造を構築するための最初の学習ベース手法を提案する。
HERALDは、ハイパーノードとハイパーエッジの隣接関係をエンドツーエンドで適応的に最適化し、タスク認識ハイパーグラフを学習する。
論文 参考訳(メタデータ) (2021-06-10T12:37:55Z) - HNHN: Hypergraph Networks with Hyperedge Neurons [90.15253035487314]
HNHNはハイパーグラフ畳み込みネットワークであり、ハイパーノードとハイパーエッジの両方に非線形活性化関数が適用される。
実世界のデータセットの分類精度と速度の両面でのHNHNの性能向上を示す。
論文 参考訳(メタデータ) (2020-06-22T14:08:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。