Towards Arbitrary-Scale Histopathology Image Super-resolution: An Efficient Dual-branch Framework via Implicit Self-texture Enhancement
- URL: http://arxiv.org/abs/2401.15613v6
- Date: Mon, 15 Jul 2024 08:24:59 GMT
- Title: Towards Arbitrary-Scale Histopathology Image Super-resolution: An Efficient Dual-branch Framework via Implicit Self-texture Enhancement
- Authors: Minghong Duan, Linhao Qu, Zhiwei Yang, Manning Wang, Chenxi Zhang, Zhijian Song,
- Abstract summary: We propose an Implicit Self-Texture Enhancement-based dual-branch framework (ISTE) for arbitrary-scale super-resolution of pathology images.
ISTE contains a pixel learning branch and a texture learning branch, which first learn pixel features and texture features, respectively.
We show that ISTE outperforms existing fixed-scale and arbitrary-scale algorithms at multiple magnifications.
- Score: 18.881480825169053
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High-quality whole-slide scanners are expensive, complex, and time-consuming, thus limiting the acquisition and utilization of high-resolution pathology whole-slide images in daily clinical work. Deep learning-based single-image super-resolution techniques are an effective way to solve this problem by synthesizing high-resolution images from low-resolution ones. However, the existing super-resolution models applied in pathology images can only work in fixed integer magnifications, significantly decreasing their applicability. Though methods based on implicit neural representation have shown promising results in arbitrary-scale super-resolution of natural images, applying them directly to pathology images is inadequate because they have unique fine-grained image textures different from natural images. Thus, we propose an Implicit Self-Texture Enhancement-based dual-branch framework (ISTE) for arbitrary-scale super-resolution of pathology images to address this challenge. ISTE contains a pixel learning branch and a texture learning branch, which first learn pixel features and texture features, respectively. Then, we design a two-stage texture enhancement strategy to fuse the features from the two branches to obtain the super-resolution results, where the first stage is feature-based texture enhancement, and the second stage is spatial-domain-based texture enhancement. Extensive experiments on three public datasets show that ISTE outperforms existing fixed-scale and arbitrary-scale algorithms at multiple magnifications and helps to improve downstream task performance. To the best of our knowledge, this is the first work to achieve arbitrary-scale super-resolution in pathology images. Codes will be available.
Related papers
- Deep Learning Based Speckle Filtering for Polarimetric SAR Images. Application to Sentinel-1 [51.404644401997736]
We propose a complete framework to remove speckle in polarimetric SAR images using a convolutional neural network.
Experiments show that the proposed approach offers exceptional results in both speckle reduction and resolution preservation.
arXiv Detail & Related papers (2024-08-28T10:07:17Z) - Multi-Scale Texture Loss for CT denoising with GANs [0.9349653765341301]
Generative Adversarial Networks (GANs) have proved as a powerful framework for denoising applications in medical imaging.
This work presents a loss function that leverages the intrinsic multi-scale nature of the Gray-Level-Co-occurrence Matrix (GLCM)
Our approach also introduces a self-attention layer that dynamically aggregates the multi-scale texture information extracted from the images.
arXiv Detail & Related papers (2024-03-25T11:28:52Z) - Creating Realistic Anterior Segment Optical Coherence Tomography Images
using Generative Adversarial Networks [0.0]
Generative Adversarial Network (GAN) purposed to create high-resolution, realistic Anterior Segment Optical Coherence Tomography (AS- OCT) images.
We trained the Style and WAvelet based GAN on 142,628 AS- OCT B-scans.
arXiv Detail & Related papers (2023-06-24T20:48:00Z) - Towards Arbitrary-scale Histopathology Image Super-resolution: An
Efficient Dual-branch Framework based on Implicit Self-texture Enhancement [6.374541716921289]
Super-resolution models for pathology images can only work in fixed integer magnifications and have limited performance.
We propose a dual-branch framework with an efficient self-texture enhancement mechanism for arbitrary-scale super-resolution of pathology images.
arXiv Detail & Related papers (2023-04-09T13:38:18Z) - Enhanced Sharp-GAN For Histopathology Image Synthesis [63.845552349914186]
Histopathology image synthesis aims to address the data shortage issue in training deep learning approaches for accurate cancer detection.
We propose a novel approach that enhances the quality of synthetic images by using nuclei topology and contour regularization.
The proposed approach outperforms Sharp-GAN in all four image quality metrics on two datasets.
arXiv Detail & Related papers (2023-01-24T17:54:01Z) - Joint Learning of Deep Texture and High-Frequency Features for
Computer-Generated Image Detection [24.098604827919203]
We propose a joint learning strategy with deep texture and high-frequency features for CG image detection.
A semantic segmentation map is generated to guide the affine transformation operation.
The combination of the original image and the high-frequency components of the original and rendered images are fed into a multi-branch neural network equipped with attention mechanisms.
arXiv Detail & Related papers (2022-09-07T17:30:40Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
A hierarchical image super-resolution network (HSRNet) is proposed to suppress the influence of aliasing.
HSRNet achieves better quantitative and visual performance than other works, and remits the aliasing more effectively.
arXiv Detail & Related papers (2022-06-07T14:55:32Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
Conditional generative adversarial networks have been applied to generate synthetic histopathology images.
We propose a sharpness loss regularized generative adversarial network to synthesize realistic histopathology images.
arXiv Detail & Related papers (2021-10-27T18:54:25Z) - Multimodal-Boost: Multimodal Medical Image Super-Resolution using
Multi-Attention Network with Wavelet Transform [5.416279158834623]
Loss of corresponding image resolution degrades the overall performance of medical image diagnosis.
Deep learning based single image super resolution (SISR) algorithms has revolutionized the overall diagnosis framework.
This work proposes generative adversarial network (GAN) with deep multi-attention modules to learn high-frequency information from low-frequency data.
arXiv Detail & Related papers (2021-10-22T10:13:46Z) - Hierarchical Conditional Flow: A Unified Framework for Image
Super-Resolution and Image Rescaling [139.25215100378284]
We propose a hierarchical conditional flow (HCFlow) as a unified framework for image SR and image rescaling.
HCFlow learns a mapping between HR and LR image pairs by modelling the distribution of the LR image and the rest high-frequency component simultaneously.
To further enhance the performance, other losses such as perceptual loss and GAN loss are combined with the commonly used negative log-likelihood loss in training.
arXiv Detail & Related papers (2021-08-11T16:11:01Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.