Addressing Noise and Efficiency Issues in Graph-Based Machine Learning
Models From the Perspective of Adversarial Attack
- URL: http://arxiv.org/abs/2401.15615v1
- Date: Sun, 28 Jan 2024 10:03:37 GMT
- Title: Addressing Noise and Efficiency Issues in Graph-Based Machine Learning
Models From the Perspective of Adversarial Attack
- Authors: Yongyu Wang
- Abstract summary: We propose treating noisy edges as adversarial attack and use a spectral adversarial robustness evaluation method to diminish the impact of noisy edges on the performance of graph algorithms.
Our method identifies those points that are less vulnerable to noisy edges and leverages only these robust points to perform graph-based algorithms.
- Score: 2.1937382384136637
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Given that no existing graph construction method can generate a perfect graph
for a given dataset, graph-based algorithms are invariably affected by the
plethora of redundant and erroneous edges present within the constructed
graphs. In this paper, we propose treating these noisy edges as adversarial
attack and use a spectral adversarial robustness evaluation method to diminish
the impact of noisy edges on the performance of graph algorithms. Our method
identifies those points that are less vulnerable to noisy edges and leverages
only these robust points to perform graph-based algorithms. Our experiments
with spectral clustering, one of the most representative and widely utilized
graph algorithms, reveal that our methodology not only substantially elevates
the precision of the algorithm but also greatly accelerates its computational
efficiency by leveraging only a select number of robust data points.
Related papers
- Oversmoothing as Loss of Sign: Towards Structural Balance in Graph Neural Networks [54.62268052283014]
Oversmoothing is a common issue in graph neural networks (GNNs)
Three major classes of anti-oversmoothing techniques can be mathematically interpreted as message passing over signed graphs.
Negative edges can repel nodes to a certain extent, providing deeper insights into how these methods mitigate oversmoothing.
arXiv Detail & Related papers (2025-02-17T03:25:36Z) - Topograph: An efficient Graph-Based Framework for Strictly Topology Preserving Image Segmentation [78.54656076915565]
Topological correctness plays a critical role in many image segmentation tasks.
Most networks are trained using pixel-wise loss functions, such as Dice, neglecting topological accuracy.
We propose a novel, graph-based framework for topologically accurate image segmentation.
arXiv Detail & Related papers (2024-11-05T16:20:14Z) - Integer Programming for Learning Directed Acyclic Graphs from Non-identifiable Gaussian Models [6.54203362045253]
We study the problem of learning directed acyclic graphs from continuous observational data.
We develop a mixed-integer programming framework for learning medium-sized problems.
Our method outperforms state-of-the-art algorithms and is robust to noise heteroscedasticity.
arXiv Detail & Related papers (2024-04-19T02:42:13Z) - GRAM: An Interpretable Approach for Graph Anomaly Detection using Gradient Attention Maps [26.011499804523808]
We propose a novel approach to graph anomaly detection that leverages the power of interpretability to enhance performance.
Our method extracts an attention map derived from gradients of graph neural networks, which serves as a basis for scoring anomalies.
We extensively evaluate our approach against state-of-the-art graph anomaly detection techniques on real-world graph classification and wireless network datasets.
arXiv Detail & Related papers (2023-11-10T16:14:21Z) - GraphCloak: Safeguarding Task-specific Knowledge within Graph-structured Data from Unauthorized Exploitation [61.80017550099027]
Graph Neural Networks (GNNs) are increasingly prevalent in a variety of fields.
Growing concerns have emerged regarding the unauthorized utilization of personal data.
Recent studies have shown that imperceptible poisoning attacks are an effective method of protecting image data from such misuse.
This paper introduces GraphCloak to safeguard against the unauthorized usage of graph data.
arXiv Detail & Related papers (2023-10-11T00:50:55Z) - Uncertainty-Aware Robust Learning on Noisy Graphs [16.66112191539017]
This paper proposes a novel uncertainty-aware graph learning framework motivated by distributionally robust optimization.
Specifically, we use a graph neural network-based encoder to embed the node features and find the optimal node embeddings.
Such an uncertainty-aware learning process leads to improved node representations and a more robust graph predictive model.
arXiv Detail & Related papers (2023-06-14T02:45:14Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Score matching enables causal discovery of nonlinear additive noise
models [63.93669924730725]
We show how to design a new generation of scalable causal discovery methods.
We propose a new efficient method for approximating the score's Jacobian, enabling to recover the causal graph.
arXiv Detail & Related papers (2022-03-08T21:34:46Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
We propose a novel perspective of graph contrastive learning methods showing random augmentations leads to encoders.
Our proposed method represents each node by a distribution in the latent space in contrast to existing techniques which embed each node to a deterministic vector.
We show a considerable improvement in performance compared to existing state-of-the-art methods on several benchmark datasets.
arXiv Detail & Related papers (2021-12-15T01:45:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.