論文の概要: UnMASKed: Quantifying Gender Biases in Masked Language Models through
Linguistically Informed Job Market Prompts
- arxiv url: http://arxiv.org/abs/2401.15798v1
- Date: Sun, 28 Jan 2024 23:00:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-30 16:24:36.517893
- Title: UnMASKed: Quantifying Gender Biases in Masked Language Models through
Linguistically Informed Job Market Prompts
- Title(参考訳): unmasked: 言語情報付き求人プロンプトによるマスキング言語モデルにおけるジェンダーバイアスの定量化
- Authors: I\~nigo Parra
- Abstract要約: この研究は、マスキング言語モデル(MLM)に存在する固有のバイアスを掘り下げる。
本研究では, BERT, RoBERTa, DistilBERT, BERT-multilingual, XLM-RoBERTa, DistilBERT-multilingualの6つのモデルについて検討した。
この分析により、すべてのモデルのステレオタイプ的な性別アライメントが明らかとなり、多言語変異は相対的にバイアスを減少させる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Language models (LMs) have become pivotal in the realm of technological
advancements. While their capabilities are vast and transformative, they often
include societal biases encoded in the human-produced datasets used for their
training. This research delves into the inherent biases present in masked
language models (MLMs), with a specific focus on gender biases. This study
evaluated six prominent models: BERT, RoBERTa, DistilBERT, BERT-multilingual,
XLM-RoBERTa, and DistilBERT-multilingual. The methodology employed a novel
dataset, bifurcated into two subsets: one containing prompts that encouraged
models to generate subject pronouns in English, and the other requiring models
to return the probabilities of verbs, adverbs, and adjectives linked to the
prompts' gender pronouns. The analysis reveals stereotypical gender alignment
of all models, with multilingual variants showing comparatively reduced biases.
- Abstract(参考訳): 言語モデル(LM)は、技術進歩の領域において重要なものとなっている。
彼らの能力は広範で変身的だが、しばしば訓練に使用される人間の生成したデータセットにエンコードされる社会バイアスを含んでいる。
この研究は、マスク付き言語モデル(MLM)に存在する固有のバイアスについて、特にジェンダーバイアスに焦点を当てている。
本研究では, BERT, RoBERTa, DistilBERT, BERT-multilingual, XLM-RoBERTa, DistilBERT-multilingualの6つのモデルについて検討した。
この手法は、2つのサブセットに分岐した新しいデータセットを用いており、1つは、英語で主語代名詞を生成するモデルを促すプロンプトと、もう1つは、プロンプトの代名詞に関連する動詞、副詞、形容詞の確率を返すモデルを含む。
この分析により、すべてのモデルのステレオタイプ的な性別アライメントが明らかとなり、多言語変異は相対的にバイアスを減少させる。
関連論文リスト
- Gender Bias in Instruction-Guided Speech Synthesis Models [55.2480439325792]
本研究では、モデルが職業関連プロンプトをどのように解釈するかにおける潜在的な性別バイアスについて検討する。
このようなプロンプトを解釈する際に、これらのモデルがジェンダーステレオタイプを増幅する傾向を示すかどうかを検討する。
実験の結果, ある職業において, 性別偏見を示す傾向が示された。
論文 参考訳(メタデータ) (2025-02-08T17:38:24Z) - Dual Debiasing: Remove Stereotypes and Keep Factual Gender for Fair Language Modeling and Translation [5.482673673984126]
言語モデルがジェンダーステレオタイプに依存しているようなバイアスの緩和は、信頼性と有用な言語技術の創造に必要な重要な取り組みである。
モデル適応による2次元ダビアシングアルゴリズム(2DAMA)を提案する。
2DAMAは、英語における性バイアスを効果的に低減し、翻訳におけるステレオタイプ傾向の緩和への最初のアプローチの一つであることを示す。
論文 参考訳(メタデータ) (2025-01-17T12:23:30Z) - Spoken Stereoset: On Evaluating Social Bias Toward Speaker in Speech Large Language Models [50.40276881893513]
本研究では,音声大言語モデル(SLLM)における社会的バイアスの評価を目的としたデータセットであるSpken Stereosetを紹介する。
多様な人口集団の発話に対して異なるモデルがどのように反応するかを調べることで、これらのバイアスを特定することを目指している。
これらの結果から,ほとんどのモデルではバイアスが最小であるが,ステレオタイプや反ステレオタイプ傾向がわずかにみられた。
論文 参考訳(メタデータ) (2024-08-14T16:55:06Z) - What an Elegant Bridge: Multilingual LLMs are Biased Similarly in Different Languages [51.0349882045866]
本稿では,Large Language Models (LLMs) の文法的ジェンダーのレンズによるバイアスについて検討する。
様々な言語における形容詞を持つ名詞を記述するためのモデルを提案し,特に文法性のある言語に焦点を当てた。
単純な分類器は、偶然以上の名詞の性別を予測できるだけでなく、言語間の移動可能性も示せる。
論文 参考訳(メタデータ) (2024-07-12T22:10:16Z) - What is Your Favorite Gender, MLM? Gender Bias Evaluation in Multilingual Masked Language Models [8.618945530676614]
本稿では,中国語,英語,ドイツ語,ポルトガル語,スペイン語の5言語から,多言語辞書の性別バイアスを推定する手法を提案する。
ジェンダーバイアスのより堅牢な分析のための文対を生成するために,新しいモデルに基づく手法を提案する。
以上の結果から,複数の評価指標をベストプラクティスとして用いた大規模データセットでは,性別バイアスを研究すべきであることが示唆された。
論文 参考訳(メタデータ) (2024-04-09T21:12:08Z) - Multilingual Text-to-Image Generation Magnifies Gender Stereotypes and Prompt Engineering May Not Help You [64.74707085021858]
多言語モデルは、モノリンガルモデルと同様に、有意な性別バイアスに悩まされていることを示す。
多言語モデルにおけるジェンダーバイアスの研究を促進するための新しいベンチマークMAGBIGを提案する。
以上の結果から,モデルが強い性バイアスを示すだけでなく,言語によって異なる行動を示すことが明らかとなった。
論文 参考訳(メタデータ) (2024-01-29T12:02:28Z) - VisoGender: A dataset for benchmarking gender bias in image-text pronoun
resolution [80.57383975987676]
VisoGenderは、視覚言語モデルで性別バイアスをベンチマークするための新しいデータセットである。
We focus to occupation-related biases in a hegemonic system of binary gender, inspired by Winograd and Winogender schemas。
我々は、最先端の視覚言語モデルをいくつかベンチマークし、それらが複雑な場面における二項性解消のバイアスを示すことを発見した。
論文 参考訳(メタデータ) (2023-06-21T17:59:51Z) - An Analysis of Social Biases Present in BERT Variants Across Multiple
Languages [0.0]
多様な言語からなる単言語BERTモデルにおけるバイアスについて検討する。
文の擬似類似度に基づいて,任意のバイアスを測定するテンプレートベースの手法を提案する。
偏見探索の現在の手法は言語に依存していると結論付けている。
論文 参考訳(メタデータ) (2022-11-25T23:38:08Z) - Are Pretrained Multilingual Models Equally Fair Across Languages? [0.0]
この研究は多言語モデルの群フェアネスを調査し、これらのモデルが言語間で等しく公平かどうかを問う。
我々は、MozArt上の3つの多言語モデル(mBERT、XLM-R、mT5)を評価し、これらのモデルが4つの対象言語で異なるグループ格差を示すことを示す。
論文 参考訳(メタデータ) (2022-10-11T13:59:19Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
機械学習モデルは、性別に偏ったテキストでトレーニングする際に、社会的に望ましくないパターンを不注意に学習することができる。
本稿では,テキスト中の性バイアスを複数の実用的・意味的な次元に沿って分解する一般的な枠組みを提案する。
このきめ細かいフレームワークを用いて、8つの大規模データセットにジェンダー情報を自動的にアノテートする。
論文 参考訳(メタデータ) (2020-05-01T21:23:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。