論文の概要: What an Elegant Bridge: Multilingual LLMs are Biased Similarly in Different Languages
- arxiv url: http://arxiv.org/abs/2407.09704v1
- Date: Fri, 12 Jul 2024 22:10:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 21:18:20.388510
- Title: What an Elegant Bridge: Multilingual LLMs are Biased Similarly in Different Languages
- Title(参考訳): エレガントブリッジとは何か:多言語 LLM は異なる言語で同様にバイアスされる
- Authors: Viktor Mihaylov, Aleksandar Shtedritski,
- Abstract要約: 本稿では,Large Language Models (LLMs) の文法的ジェンダーのレンズによるバイアスについて検討する。
様々な言語における形容詞を持つ名詞を記述するためのモデルを提案し,特に文法性のある言語に焦点を当てた。
単純な分類器は、偶然以上の名詞の性別を予測できるだけでなく、言語間の移動可能性も示せる。
- 参考スコア(独自算出の注目度): 51.0349882045866
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper investigates biases of Large Language Models (LLMs) through the lens of grammatical gender. Drawing inspiration from seminal works in psycholinguistics, particularly the study of gender's influence on language perception, we leverage multilingual LLMs to revisit and expand upon the foundational experiments of Boroditsky (2003). Employing LLMs as a novel method for examining psycholinguistic biases related to grammatical gender, we prompt a model to describe nouns with adjectives in various languages, focusing specifically on languages with grammatical gender. In particular, we look at adjective co-occurrences across gender and languages, and train a binary classifier to predict grammatical gender given adjectives an LLM uses to describe a noun. Surprisingly, we find that a simple classifier can not only predict noun gender above chance but also exhibit cross-language transferability. We show that while LLMs may describe words differently in different languages, they are biased similarly.
- Abstract(参考訳): 本稿では,文法的ジェンダーのレンズによるLarge Language Models(LLMs)のバイアスについて検討する。
心理言語学における基礎研究、特にジェンダーが言語知覚に与える影響の研究からインスピレーションを得た上で、多言語LLMを活用してボロディツキーの基礎実験(2003年)を再考し、拡張する。
LLMを文法性に関連する心理言語学的バイアスを調べるための新しい手法として,様々な言語で形容詞を持つ名詞を記述するモデルを提案し,特に文法性のある言語に焦点を当てた。
特に, 名詞を記述するために LLM が用いている形容詞の文法的性別を予測するために, 男女・言語間の形容詞共起について検討し, 二項分類器を訓練する。
意外なことに、単純な分類器は偶然以上の名詞の性別を予測できるだけでなく、言語間の移動可能性も示せる。
LLMは異なる言語で異なる単語を記述できるが、同様にバイアスを受ける。
関連論文リスト
- Investigating grammatical abstraction in language models using few-shot learning of novel noun gender [0.0]
我々は,LSTMとデコーダのみのトランスフォーマーが,フランス語の文法的ジェンダーを人間のように抽象化できるかどうかを評価するために名詞学習実験を行った。
両言語モデルが一対二の学習例から新約名詞のジェンダーを効果的に一般化し,合意文脈にまたがって学習したジェンダーを適用した。
モデルの一般化行動は、それらが人間のように文法的な性別を抽象的なカテゴリーとして表現していることを示しているが、詳細を探求するにはさらなる作業が必要である。
論文 参考訳(メタデータ) (2024-03-15T14:25:59Z) - Gender Bias in Large Language Models across Multiple Languages [10.068466432117113]
異なる言語で生成される大言語モデル(LLM)の性別バイアスについて検討する。
1) 性別関連文脈から記述的単語を選択する際の性別バイアス。
2) 性別関連代名詞を選択する際の性別バイアスは, 記述語を付与する。
論文 参考訳(メタデータ) (2024-03-01T04:47:16Z) - Grammatical Gender's Influence on Distributional Semantics: A Causal
Perspective [100.47362690469669]
言語間のジェンダーの割り当てにどの程度の意味が影響するかは、現代言語学と認知科学における活発な研究分野である。
我々は、名詞の文法的性別、意味、形容詞選択の間の相互作用を共同で表現する、新しい因果的グラフィカルモデルを提供する。
文法的ジェンダーが形容詞選択にほぼゼロ効果があることに気付き、ネオ・ヴォルフの仮説を疑問視する。
論文 参考訳(メタデータ) (2023-11-30T13:58:13Z) - Measuring Gender Bias in Word Embeddings of Gendered Languages Requires
Disentangling Grammatical Gender Signals [3.0349733976070015]
単語埋め込みは、文法性のある言語における名詞とその文法性との関係を学習することを示した。
単語埋め込みから文法的ジェンダー信号を引き離すことは、セマンティック機械学習タスクの改善につながる可能性があることを示す。
論文 参考訳(メタデータ) (2022-06-03T17:11:00Z) - Analyzing Gender Representation in Multilingual Models [59.21915055702203]
実践的なケーススタディとして,ジェンダーの区別の表現に焦点をあてる。
ジェンダーの概念が、異なる言語で共有された部分空間にエンコードされる範囲について検討する。
論文 参考訳(メタデータ) (2022-04-20T00:13:01Z) - Gender Bias Hidden Behind Chinese Word Embeddings: The Case of Chinese
Adjectives [0.0]
本論文は,中国語形容詞の独特な視点から,静的単語埋め込みにおける性別バイアスについて検討する。
生成した結果と人間によって表されたデータセットを比較することで,単語埋め込みに符号化された性別バイアスが人々の態度とどのように異なるかを示す。
論文 参考訳(メタデータ) (2021-06-01T02:12:45Z) - Quantifying Gender Bias Towards Politicians in Cross-Lingual Language
Models [104.41668491794974]
代名詞として政治家の名前を取り巻く言語モデルによって生成される形容詞と動詞の用法を定量化する。
死者や指定された言葉が男女の政治家と関連しているのに対し、美人や離婚といった特定の言葉が主に女性政治家に関係していることが判明した。
論文 参考訳(メタデータ) (2021-04-15T15:03:26Z) - Investigating Cross-Linguistic Adjective Ordering Tendencies with a
Latent-Variable Model [66.84264870118723]
本稿では,多言語形容詞順序付けを潜在変数モデルとして,初めて純粋コーパス駆動モデルを提案する。
我々は普遍的、言語横断的、階層的形容詞順序付け傾向の存在の強い確固たる証拠を提供する。
論文 参考訳(メタデータ) (2020-10-09T18:27:55Z) - An exploration of the encoding of grammatical gender in word embeddings [0.6461556265872973]
単語埋め込みに基づく文法性の研究は、文法性がどのように決定されるかについての議論の洞察を与えることができる。
スウェーデン語、デンマーク語、オランダ語の埋め込みにおいて、文法的な性別がどのように符号化されているかには重複があることが判明した。
論文 参考訳(メタデータ) (2020-08-05T06:01:46Z) - Gender Bias in Multilingual Embeddings and Cross-Lingual Transfer [101.58431011820755]
多言語埋め込みにおけるジェンダーバイアスとNLPアプリケーションの伝達学習への影響について検討する。
我々は、バイアス分析のための多言語データセットを作成し、多言語表現におけるバイアスの定量化方法をいくつか提案する。
論文 参考訳(メタデータ) (2020-05-02T04:34:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。