論文の概要: Corrective Retrieval Augmented Generation
- arxiv url: http://arxiv.org/abs/2401.15884v2
- Date: Fri, 16 Feb 2024 19:10:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-21 03:04:36.311368
- Title: Corrective Retrieval Augmented Generation
- Title(参考訳): 補正検索強化ジェネレーション
- Authors: Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, Zhen-Hua Ling
- Abstract要約: Retrieval-augmented Generation (RAG) は、検索された文書の関連性に大きく依存しており、検索が失敗した場合のモデルがどのように振る舞うかについての懸念を提起する。
生成の堅牢性を改善するために,CRAG(Corrective Retrieval Augmented Generation)を提案する。
CRAGはプラグアンドプレイであり、様々なRAGベースのアプローチとシームレスに結合できる。
- 参考スコア(独自算出の注目度): 39.371798735872865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) inevitably exhibit hallucinations since the
accuracy of generated texts cannot be secured solely by the parametric
knowledge they encapsulate. Although retrieval-augmented generation (RAG) is a
practicable complement to LLMs, it relies heavily on the relevance of retrieved
documents, raising concerns about how the model behaves if retrieval goes
wrong. To this end, we propose the Corrective Retrieval Augmented Generation
(CRAG) to improve the robustness of generation. Specifically, a lightweight
retrieval evaluator is designed to assess the overall quality of retrieved
documents for a query, returning a confidence degree based on which different
knowledge retrieval actions can be triggered. Since retrieval from static and
limited corpora can only return sub-optimal documents, large-scale web searches
are utilized as an extension for augmenting the retrieval results. Besides, a
decompose-then-recompose algorithm is designed for retrieved documents to
selectively focus on key information and filter out irrelevant information in
them. CRAG is plug-and-play and can be seamlessly coupled with various
RAG-based approaches. Experiments on four datasets covering short- and
long-form generation tasks show that CRAG can significantly improve the
performance of RAG-based approaches.
- Abstract(参考訳): 大規模言語モデル(LLM)は、生成したテキストの精度は、カプセル化したパラメトリック知識だけでは確保できないため、必然的に幻覚を示す。
検索強化世代(RAG)は、LLMの実践的な補完であるが、検索された文書の関連性に大きく依存しており、検索がうまくいかなかった場合、モデルがどのように振る舞うかについての懸念を提起する。
この目的のために、我々は、生成の堅牢性を改善するために、CRAG(Corrective Retrieval Augmented Generation)を提案する。
具体的には、検索された文書の全体的な品質を評価する軽量検索評価器を設計し、異なる知識検索アクションをトリガーする信頼度を返却する。
静的なコーパスや限定的なコーパスからの検索は最適なドキュメントしか返せないため、大規模なウェブ検索は検索結果を増強するための拡張として利用される。
また、検索した文書に対して、キー情報に選択的にフォーカスし、その中の無関係情報をフィルタリングする分解処理アルゴリズムを設計する。
CRAGはプラグアンドプレイであり、様々なRAGベースのアプローチとシームレスに結合できる。
ショートフォームおよびロングフォーム生成タスクをカバーする4つのデータセットの実験は、CRAGがRAGベースのアプローチの性能を大幅に改善できることを示している。
関連論文リスト
- Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
本稿では,複雑なQAタスクに対する適応ノート拡張RAG(Adaptive Note-Enhanced RAG)と呼ばれる汎用RAGアプローチを提案する。
具体的には、Adaptive-Noteは、知識の成長に関する包括的な視点を導入し、ノート形式で新しい情報を反復的に収集する。
さらに,適切な知識探索を促進するために,適応的な音符ベースの停止探索戦略を用いて,「何を検索し,いつ停止するか」を判断する。
論文 参考訳(メタデータ) (2024-10-11T14:03:29Z) - Optimizing Query Generation for Enhanced Document Retrieval in RAG [53.10369742545479]
大規模言語モデル(LLM)は様々な言語タスクに優れるが、しばしば誤った情報を生成する。
Retrieval-Augmented Generation (RAG) は、正確な応答に文書検索を使用することによってこれを緩和することを目的としている。
論文 参考訳(メタデータ) (2024-07-17T05:50:32Z) - DR-RAG: Applying Dynamic Document Relevance to Retrieval-Augmented Generation for Question-Answering [4.364937306005719]
RAGは最近、質問応答(QA)のような知識集約的なタスクにおいて、LLM(Large Language Models)のパフォーマンスを実証した。
重要な文書とクエリの間には関連性が低いものの,文書の一部とクエリを組み合わせることで,残りの文書を検索できることがわかった。
文書検索のリコールと回答の精度を向上させるために,DR-RAG(Dynamic-Relevant Retrieval-Augmented Generation)と呼ばれる2段階検索フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-11T15:15:33Z) - Accelerating Inference of Retrieval-Augmented Generation via Sparse Context Selection [28.15184715270483]
大きな言語モデル (LLM) は、検索によって強化され、堅牢な性能と広範な汎用性を示す。
本稿では,スパースRAGという新しいパラダイムを提案する。
Sparse RAGは、検索したドキュメントを並列にエンコードする。
論文 参考訳(メタデータ) (2024-05-25T11:10:04Z) - RQ-RAG: Learning to Refine Queries for Retrieval Augmented Generation [42.82192656794179]
大きな言語モデル(LLM)は優れた能力を示すが、不正確なあるいは幻覚反応を引き起こす傾向がある。
この制限は、膨大な事前トレーニングデータセットに依存することに起因するため、目に見えないシナリオでのエラーの影響を受けやすい。
Retrieval-Augmented Generation (RAG) は、外部の関連文書を応答生成プロセスに組み込むことによって、この問題に対処する。
論文 参考訳(メタデータ) (2024-03-31T08:58:54Z) - Blended RAG: Improving RAG (Retriever-Augmented Generation) Accuracy with Semantic Search and Hybrid Query-Based Retrievers [0.0]
Retrieval-Augmented Generation (RAG) は、大規模言語モデル (LLM) で文書のプライベートな知識基盤を注入し、生成的Q&A (Question-Answering) システムを構築するための一般的なアプローチである。
本稿では,Vector インデックスや Sparse インデックスなどのセマンティック検索手法をハイブリッドクエリ手法と組み合わせた 'Blended RAG' 手法を提案する。
本研究は,NQ や TREC-COVID などの IR (Information Retrieval) データセットの検索結果の改善と,新たなベンチマーク設定を行う。
論文 参考訳(メタデータ) (2024-03-22T17:13:46Z) - GAR-meets-RAG Paradigm for Zero-Shot Information Retrieval [16.369071865207808]
本稿では,既存のパラダイムの課題を克服する新しいGAR-meets-RAG再帰の定式化を提案する。
鍵となる設計原則は、リライト・検索段階がシステムのリコールを改善し、最終段階が精度を向上させることである。
我々の手法はBEIRベンチマークで新たな最先端性を確立し、8つのデータセットのうち6つでRecall@100とnDCG@10の指標で過去の最高の結果を上回った。
論文 参考訳(メタデータ) (2023-10-31T03:52:08Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
我々は、自己回帰検索拡張生成(Self-RAG)と呼ばれる新しいフレームワークを導入する。
自己RAGは、検索と自己回帰によってLMの品質と事実性を高める。
様々なタスクセットにおいて、最先端のLCMや検索強化モデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2023-10-17T18:18:32Z) - Noise-Robust Dense Retrieval via Contrastive Alignment Post Training [89.29256833403167]
Contrastive Alignment POst Training (CAPOT) は、指数再生を必要とせず、モデルロバスト性を改善する高効率な微調整法である。
CAPOTはドキュメントエンコーダを凍結することで堅牢な検索を可能にし、クエリエンコーダはノイズの多いクエリを修正されていないルートに整列させる。
MSMARCO、Natural Questions、Trivia QAパス検索のCAPOTノイズ変動を評価し、CAPOTがオーバーヘッドを伴わないデータ増大に類似した影響があることを発見した。
論文 参考訳(メタデータ) (2023-04-06T22:16:53Z) - Autoregressive Search Engines: Generating Substrings as Document
Identifiers [53.0729058170278]
自動回帰言語モデルは、回答を生成するデファクト標準として現れています。
これまでの研究は、探索空間を階層構造に分割する方法を探究してきた。
本研究では,検索空間の任意の構造を強制しない代替として,経路内のすべてのngramを識別子として使用することを提案する。
論文 参考訳(メタデータ) (2022-04-22T10:45:01Z) - Generation-Augmented Retrieval for Open-domain Question Answering [134.27768711201202]
GAR(Generation-Augmented Retrieval)は、オープンドメインの質問に答える機能である。
クエリーに対して多様なコンテキストを生成することは、結果の融合が常により良い検索精度をもたらすので有益であることを示す。
GARは、抽出読取装置を備えた場合、抽出QA設定の下で、自然質問およびトリビアQAデータセットの最先端性能を達成する。
論文 参考訳(メタデータ) (2020-09-17T23:08:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。