論文の概要: Enhancing Topological Dependencies in Spatio-Temporal Graphs with Cycle Message Passing Blocks
- arxiv url: http://arxiv.org/abs/2401.15894v2
- Date: Thu, 05 Dec 2024 19:59:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-09 15:54:20.061802
- Title: Enhancing Topological Dependencies in Spatio-Temporal Graphs with Cycle Message Passing Blocks
- Title(参考訳): 周期メッセージパッシングブロックを用いた時空間グラフのトポロジ的依存性の促進
- Authors: Minho Lee, Yun Young Choi, Sun Woo Park, Seunghwan Lee, Joohwan Ko, Jaeyoung Hong,
- Abstract要約: 本稿では,グラフのトポロジ的非時間表現に基づく新しいGNNであるCy2Mixerを紹介する。
我々は,Cy2Mixerの有効性を,我々のサイクルメッセージパスブロックが深層学習モデルに識別情報を提供できることを強調した数学的証拠で補強する。
- 参考スコア(独自算出の注目度): 7.385231433608805
- License:
- Abstract: Graph Neural Networks (GNNs) and Transformer-based models have been increasingly adopted to learn the complex vector representations of spatio-temporal graphs, capturing intricate spatio-temporal dependencies crucial for applications such as traffic datasets. Although many existing methods utilize multi-head attention mechanisms and message-passing neural networks (MPNNs) to capture both spatial and temporal relations, these approaches encode temporal and spatial relations independently, and reflect the graph's topological characteristics in a limited manner. In this work, we introduce the Cycle to Mixer (Cy2Mixer), a novel spatio-temporal GNN based on topological non-trivial invariants of spatio-temporal graphs with gated multi-layer perceptrons (gMLP). The Cy2Mixer is composed of three blocks based on MLPs: A temporal block for capturing temporal properties, a message-passing block for encapsulating spatial information, and a cycle message-passing block for enriching topological information through cyclic subgraphs. We bolster the effectiveness of Cy2Mixer with mathematical evidence emphasizing that our cycle message-passing block is capable of offering differentiated information to the deep learning model compared to the message-passing block. Furthermore, empirical evaluations substantiate the efficacy of the Cy2Mixer, demonstrating state-of-the-art performances across various spatio-temporal benchmark datasets. The source code is available at \url{https://github.com/leemingo/cy2mixer}.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)とトランスフォーマーベースのモデルは、時空間グラフの複雑なベクトル表現を学ぶためにますます採用され、トラフィックデータセットのようなアプリケーションにとって不可欠な複雑な時空間依存を捉えている。
多くの既存手法では、マルチヘッドアテンション機構とメッセージパッシングニューラルネットワーク(MPNN)を用いて空間的・時間的関係を捉えるが、これらの手法は時間的・空間的関係を独立に符号化し、グラフの位相的特性を限定的に反映する。
本研究では,多層パーセプトロン (gMLP) を持つ時空間グラフの位相的非自明な不変量に基づく新しい時空間GNNであるCy2Mixer(Cy2Mixer)を紹介する。
Cy2Mixer は、時間特性をキャプチャする時間ブロック、空間情報をカプセル化するメッセージパスブロック、循環的な部分グラフを通じて位相情報を豊かにするサイクルメッセージパスブロックの3つのブロックで構成されている。
我々は,Cy2Mixerの有効性を,我々の周期的メッセージパッシングブロックが,メッセージパッシングブロックと比較して深層学習モデルに差分情報を提供できることを強調した数学的証拠で裏付ける。
さらに、経験的評価はCy2Mixerの有効性を裏付け、様々な時空間ベンチマークデータセットの最先端性能を示す。
ソースコードは \url{https://github.com/leemingo/cy2mixer} で入手できる。
関連論文リスト
- Temporal Aggregation and Propagation Graph Neural Networks for Dynamic
Representation [67.26422477327179]
時間グラフは連続時間を通してノード間の動的相互作用を示す。
本研究では,周辺地域全体と時間的グラフ畳み込みの新たな手法を提案する。
提案するTAP-GNNは,予測性能とオンライン推論遅延の両面で,既存の時間グラフ手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-04-15T08:17:18Z) - Attention-based Spatial-Temporal Graph Convolutional Recurrent Networks
for Traffic Forecasting [12.568905377581647]
交通予測は交通科学と人工知能における最も基本的な問題の一つである。
既存の手法では、長期的相関と短期的相関を同時にモデル化することはできない。
本稿では,GCRN(Graph Convolutional Recurrent Module)とグローバルアテンションモジュールからなる新しい時空間ニューラルネットワークフレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-25T03:37:00Z) - Leveraging Spatio-Temporal Dependency for Skeleton-Based Action
Recognition [9.999149887494646]
骨格をベースとした行動認識は、人体の骨格縫合のコンパクトな表現により、かなりの注目を集めている。
グラフ畳み込みニューラルネットワーク(GCN)と畳み込みニューラルネットワーク(CNN)を用いた最近の多くの手法が目覚ましい性能を実現している。
論文 参考訳(メタデータ) (2022-12-09T10:37:22Z) - Multi-Scale Spatial Temporal Graph Convolutional Network for
Skeleton-Based Action Recognition [13.15374205970988]
本稿では,マルチスケール空間グラフ畳み込み (MS-GC) モジュールとマルチスケール時間グラフ畳み込み (MT-GC) モジュールを提案する。
MS-GCおよびMT-GCモジュールは対応する局所グラフ畳み込みをサブグラフ畳み込みの集合に分解し、階層的残差アーキテクチャを形成する。
本稿では,マルチスケールな時空間グラフ畳み込みネットワーク(MST-GCN)を提案する。
論文 参考訳(メタデータ) (2022-06-27T03:17:33Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
近年、時間グラフモデリング問題として交通予測の定式化に焦点が移っている。
本稿では,道路網における交通予測の精度向上のための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-11-25T08:45:14Z) - Space-Time Graph Neural Networks [104.55175325870195]
本研究では、時空間グラフニューラルネットワーク(ST-GNN)を導入し、時間変動ネットワークデータの時空間トポロジを共同処理する。
解析の結果,システムのネットワークトポロジと時間進化の変動はST-GNNの性能に大きく影響しないことがわかった。
論文 参考訳(メタデータ) (2021-10-06T16:08:44Z) - Spatial-Temporal Correlation and Topology Learning for Person
Re-Identification in Videos [78.45050529204701]
クロススケール空間時空間相関をモデル化し, 識別的, 堅牢な表現を追求する新しい枠組みを提案する。
CTLはCNNバックボーンとキーポイント推定器を使用して人体から意味的局所的特徴を抽出する。
グローバルな文脈情報と人体の物理的接続の両方を考慮して、多スケールグラフを構築するためのコンテキスト強化トポロジーを探求する。
論文 参考訳(メタデータ) (2021-04-15T14:32:12Z) - SST-GNN: Simplified Spatio-temporal Traffic forecasting model using
Graph Neural Network [2.524966118517392]
我々は,SST-GNN(SST-GNN)を簡易に設計し,異なる地区を個別に集約することで依存性を効果的に符号化した。
我々は,本モデルが3つの実環境トラフィックデータセットの最先端モデルよりも大幅に優れていることを示した。
論文 参考訳(メタデータ) (2021-03-31T18:28:44Z) - Multi-Temporal Convolutions for Human Action Recognition in Videos [83.43682368129072]
複数の解像度で抽出できる新しい時間・時間的畳み込みブロックを提案する。
提案するブロックは軽量で,任意の3D-CNNアーキテクチャに統合可能である。
論文 参考訳(メタデータ) (2020-11-08T10:40:26Z) - Disentangling and Unifying Graph Convolutions for Skeleton-Based Action
Recognition [79.33539539956186]
本稿では,マルチスケールグラフ畳み込みと,G3Dという空間時間グラフ畳み込み演算子を結合する簡単な方法を提案する。
これらの提案を結合することにより,MS-G3Dという強力な特徴抽出器を開発し,そのモデルが3つの大規模データセット上で従来の最先端手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-03-31T11:28:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。