論文の概要: NoFunEval: Funny How Code LMs Falter on Requirements Beyond Functional Correctness
- arxiv url: http://arxiv.org/abs/2401.15963v3
- Date: Sun, 29 Sep 2024 05:03:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 22:02:08.909408
- Title: NoFunEval: Funny How Code LMs Falter on Requirements Beyond Functional Correctness
- Title(参考訳): NoFunEval: 機能的正確性以外の要件について,コード LM がどう対処するか
- Authors: Manav Singhal, Tushar Aggarwal, Abhijeet Awasthi, Nagarajan Natarajan, Aditya Kanade,
- Abstract要約: 既存のコード言語モデルの評価ベンチマーク(コードLM)は、LMが機能的に正しいコードを生成することができるかどうかにのみ焦点を絞っている。
非機能要件と非機能要件の両方に対する単純な分類インスタンスに基づいて、コードLMを評価するため、新しいベンチマークNoFunEvalを提案する。
私たちの発見は、LMがベンチマークでテストすると、一般的に失敗し、トレーニング設定の基本的な盲点を示唆していることです。
- 参考スコア(独自算出の注目度): 10.502272765892908
- License:
- Abstract: Existing evaluation benchmarks of language models of code (code LMs) focus almost exclusively on whether the LMs can generate functionally-correct code. In real-world software engineering, developers think beyond functional correctness. They have requirements on "how" a functionality should be implemented to meet overall system design objectives like efficiency, security, and maintainability. They would also trust the code LMs more if the LMs demonstrate robust understanding of such requirements. We propose a new benchmark NoFunEval to evaluate code LMs on non-functional requirements and simple classification instances for both functional and non-functional requirements. We propose a prompting method, Coding Concepts (CoCo), as a way for a developer to communicate the domain knowledge to the LMs. We conduct an extensive evaluation of 27 code LMs. Our finding is that LMs generally falter when tested on our benchmark, hinting at fundamental blindspots in their training setups. Surprisingly, even the classification accuracy on functional-correctness instances derived from the popular HumanEval benchmark is low, calling in question the depth of their comprehension and the source of their success in generating functionally-correct code in the first place. We release our benchmark and evaluation scripts publicly at https://aka.ms/NoFunEval.
- Abstract(参考訳): 既存のコード言語モデルの評価ベンチマーク(コードLM)は、LMが機能的に正しいコードを生成することができるかどうかにのみ焦点を絞っている。
現実世界のソフトウェアエンジニアリングでは、開発者は機能的正確性を超えて考える。
は、効率性、セキュリティ、保守性といったシステム設計の目的を満たすために実装されるべきである。
LMがそのような要件をしっかりと理解しているなら、彼らはLMのコードをもっと信頼するだろう。
非機能要件と非機能要件の両方に対する単純な分類インスタンスに基づいて、コードLMを評価するため、新しいベンチマークNoFunEvalを提案する。
本研究では、開発者がドメイン知識をLMに伝達する手段として、プロンプト方式CoCoを提案する。
我々は,27個のコードLMを広範囲に評価する。
私たちの発見は、LMがベンチマークでテストすると、一般的に失敗し、トレーニング設定の基本的な盲点を示唆していることです。
驚くべきことに、人気のあるHumanEvalベンチマークから得られた機能的正当性インスタンスの分類精度も低く、その理解の深さと、そもそも機能的正当性コードを生成する成功源を疑問視している。
ベンチマークと評価スクリプトはhttps://aka.ms/NoFunEval.comで公開しています。
関連論文リスト
- How Efficient is LLM-Generated Code? A Rigorous & High-Standard Benchmark [39.13045037676502]
大規模言語モデル(LLM)の開発は、プログラム合成のフロンティアを著しく押し上げている。
ほとんどの評価フレームワークは生成したコードの(機能的な)正しさに重点を置いています。
我々は,LLMの効率的なコード生成能力を評価するための厳格で高水準なベンチマークENAMELを開発した。
論文 参考訳(メタデータ) (2024-06-10T04:19:20Z) - How Far Have We Gone in Stripped Binary Code Understanding Using Large Language Models [51.527805834378974]
バイナリコード理解におけるLarge Language Models(LLM)の有効性を評価するためのベンチマークを提案する。
評価の結果、既存のLLMはバイナリコードをある程度理解でき、それによってバイナリコード解析の効率が向上することが明らかとなった。
論文 参考訳(メタデータ) (2024-04-15T14:44:08Z) - Reasoning Runtime Behavior of a Program with LLM: How Far Are We? [25.451857140926943]
コードのための大規模な言語モデル(LLM)は、強力なコード理解と生成能力を示している。
コード推論は、コードLLMの最も重要な能力の1つである。
本稿では,プログラム実行によるLLMのコード推論能力と一貫性を評価するためのフレームワークであるRevalを提案する。
論文 参考訳(メタデータ) (2024-03-25T05:37:16Z) - InfiBench: Evaluating the Question-Answering Capabilities of Code Large Language Models [56.723509505549536]
InfiBenchは、私たちの知識に合ったコードのための、最初の大規模フリーフォーム質問回答(QA)ベンチマークです。
慎重に選択された234の高品質なStack Overflow質問で構成されており、15のプログラミング言語にまたがっている。
InfiBench上で100以上の最新のコードLLMに対して,系統的評価を行い,新しい知見と洞察に富んだ結果を得た。
論文 参考訳(メタデータ) (2024-03-11T02:06:30Z) - Mercury: A Code Efficiency Benchmark for Code Large Language Models [41.51235610016959]
我々は、Large Language Models for Code (Code LLMs)の最初のコード効率ベンチマークであるMercuryを提示する。
1,889のPythonタスクで構成され、それぞれに現実の効率のベースラインとして機能する適切なソリューションが伴っている。
そこで我々は,機能的正当性とコード効率を同時に反映する,実行時毎のパススコアを計算する新たな指標Beyondを導入する。
論文 参考訳(メタデータ) (2024-02-12T17:53:22Z) - Assured LLM-Based Software Engineering [51.003878077888686]
この記事では,2024年4月15日にポルトガルのリスボンで開催された International Workshop on Interpretability, Robustness, and Benchmarking in Neural Software Engineering で,Mark Harman 氏による基調講演の内容の概要を紹介する。
論文 参考訳(メタデータ) (2024-02-06T20:38:46Z) - Chain of Code: Reasoning with a Language Model-Augmented Code Emulator [115.16975276693267]
我々は、LMコード駆動推論を改善するシンプルながら驚くほど効果的な拡張であるChain of Codeを提案する。
キーとなるアイデアは、プログラム内のセマンティックなサブタスクを、インタープリタが明示的にキャッチできるフレキシブルな擬似コードとしてフォーマットすることを、LMに促すことである。
論文 参考訳(メタデータ) (2023-12-07T17:51:43Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
本稿では,新しいタスク,CLOMO(Counterfactual Logical Modification)と高品質な人間アノテーションベンチマークを紹介する。
このタスクでは、LLMは所定の論理的関係を維持するために、与えられた議論的テキストを順応的に変更しなければなりません。
LLMの自然言語出力を直接評価する革新的な評価指標である自己評価スコア(SES)を提案する。
論文 参考訳(メタデータ) (2023-11-29T08:29:54Z) - Test-Case-Driven Programming Understanding in Large Language Models for
Better Code Generation [15.166827643436346]
muFiXは、大きな言語モデル(LLM)のコード生成性能を改善する新しいプロンプト技術である。
まず、テストケース分析を利用して仕様の理解を得、自己改善プロセスを可能にする。
muFiXはさらに、提供された理解と実際の理解の間のギャップを減らす方向に向けた仕様理解を修正している。
論文 参考訳(メタデータ) (2023-09-28T02:58:07Z) - LeTI: Learning to Generate from Textual Interactions [60.425769582343506]
本稿では,テキストインタラクション(LETI)から学習するLMの可能性を,バイナリラベルによる正当性をチェックするだけでなく,テキストフィードバックを通じて出力中のエラーをピンポイントし,説明する。
私たちの焦点はコード生成タスクであり、そこではモデルが自然言語命令に基づいてコードを生成する。
LETIは、目的のLMを用いて、自然言語命令、LM生成プログラム、テキストフィードバックの結合に基づいて、モデルを反復的に微調整する。
論文 参考訳(メタデータ) (2023-05-17T15:53:31Z) - CodeScore: Evaluating Code Generation by Learning Code Execution [34.08307174529496]
本稿では,3つの入力フォーマット上で生成されたコードの関数的正当性を推定する大規模言語モデル(LLM)ベースのCEMであるCodeScoreを提案する。
CodeScoreは、他のCEMと比較して58.87%の相関性を向上し、最先端のパフォーマンスを達成し、3つの入力フォーマットを効果的に扱う。
論文 参考訳(メタデータ) (2023-01-22T02:59:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。