論文の概要: Spatio-Temporal Attention Graph Neural Network for Remaining Useful Life
Prediction
- arxiv url: http://arxiv.org/abs/2401.15964v1
- Date: Mon, 29 Jan 2024 08:49:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-30 15:25:37.427756
- Title: Spatio-Temporal Attention Graph Neural Network for Remaining Useful Life
Prediction
- Title(参考訳): 時空間的注意グラフニューラルネットワークによる寿命予測
- Authors: Zhixin Huang and Yujiang He and Bernhard Sick
- Abstract要約: 本研究では,時空間注意グラフニューラルネットワークを提案する。
本モデルでは,空間的・時間的特徴抽出のために,グラフニューラルネットワークと時間的畳み込みニューラルネットワークを組み合わせる。
C-MAPSSデータセットを用いて、クラスタリング正規化とクラスタリング正規化の影響を評価するための総合的な実験を行った。
- 参考スコア(独自算出の注目度): 1.831835396047386
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Remaining useful life prediction plays a crucial role in the health
management of industrial systems. Given the increasing complexity of systems,
data-driven predictive models have attracted significant research interest.
Upon reviewing the existing literature, it appears that many studies either do
not fully integrate both spatial and temporal features or employ only a single
attention mechanism. Furthermore, there seems to be inconsistency in the choice
of data normalization methods, particularly concerning operating conditions,
which might influence predictive performance. To bridge these observations,
this study presents the Spatio-Temporal Attention Graph Neural Network. Our
model combines graph neural networks and temporal convolutional neural networks
for spatial and temporal feature extraction, respectively. The cascade of these
extractors, combined with multi-head attention mechanisms for both
spatio-temporal dimensions, aims to improve predictive precision and refine
model explainability. Comprehensive experiments were conducted on the C-MAPSS
dataset to evaluate the impact of unified versus clustering normalization. The
findings suggest that our model performs state-of-the-art results using only
the unified normalization. Additionally, when dealing with datasets with
multiple operating conditions, cluster normalization enhances the performance
of our proposed model by up to 27%.
- Abstract(参考訳): 有用生命予測は産業システムの健康管理において重要な役割を担っている。
システムの複雑さが増大する中、データ駆動予測モデルは大きな研究関心を集めている。
既存の文献をレビューすると、多くの研究は空間的特徴と時間的特徴を完全に統合していないか、ただ一つの注意機構しか採用していないようだ。
さらに,データ正規化手法の選択には矛盾があり,特に動作条件が予測性能に影響を及ぼす可能性がある。
これらの観測を橋渡しするために,時空間注意グラフニューラルネットワークを提案する。
本モデルでは,グラフニューラルネットワークと時間畳み込みニューラルネットワークを組み合わせて,時間的特徴抽出を行う。
これらの抽出器のカスケードと時空間次元の多面的注意機構は、予測精度の向上とモデル説明性の向上を目的としている。
C-MAPSSデータセットを用いて、クラスタリング正規化とクラスタリング正規化の比較実験を行った。
その結果,本モデルでは統一正規化のみを用いて最先端の結果が得られた。
さらに、複数の運用条件でデータセットを扱う場合、クラスタ正規化は提案モデルの性能を最大27%向上させる。
関連論文リスト
- CogDPM: Diffusion Probabilistic Models via Cognitive Predictive Coding [62.075029712357]
本研究は認知拡散確率モデル(CogDPM)を紹介する。
CogDPMは拡散モデルの階層的サンプリング能力に基づく精度推定法と拡散モデル固有の性質から推定される精度重み付きガイダンスを備える。
我々は,Universal Kindomの降水量と表面風速データセットを用いた実世界の予測タスクにCogDPMを適用した。
論文 参考訳(メタデータ) (2024-05-03T15:54:50Z) - A Survey on Diffusion Models for Time Series and Spatio-Temporal Data [92.1255811066468]
時系列およびS時間データにおける拡散モデルの使用について概観し、それらをモデル、タスクタイプ、データモダリティ、実用的なアプリケーションドメインで分類する。
我々は拡散モデルを無条件型と条件付き型に分類し、時系列とS時間データを別々に議論する。
本調査は,医療,レコメンデーション,気候,エネルギー,オーディオ,交通など,さまざまな分野の応用を幅広くカバーしている。
論文 参考訳(メタデータ) (2024-04-29T17:19:40Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
軌道予測は、観測されたシーケンスから実体運動や人間の行動を理解する上で重要な作業である。
現在の方法では、観測されたシーケンスが完了したと仮定し、欠落した値の可能性を無視する。
本稿では,グラフに基づく条件変動リカレントニューラルネットワーク (GC-VRNN) の統一フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-28T14:27:27Z) - DisenHCN: Disentangled Hypergraph Convolutional Networks for
Spatiotemporal Activity Prediction [53.76601630407521]
本稿では,既存のソリューションのギャップを埋めるために,DistenHCNと呼ばれるハイパーグラフネットワークモデルを提案する。
特に,ユーザの好みと時間的活動の複雑なマッチングをヘテロジニアスなハイパーグラフにまとめる。
次に、ユーザ表現を異なる側面(位置認識、時間認識、活動認識)に切り離し、構築したハイパーグラフ上に対応するアスペクトの特徴を集約する。
論文 参考訳(メタデータ) (2022-08-14T06:51:54Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - Building Autocorrelation-Aware Representations for Fine-Scale
Spatiotemporal Prediction [1.2862507359003323]
本稿では,空間統計理論をニューラルネットワークに組み込んだ新しいディープラーニングアーキテクチャを提案する。
DeepLATTEには、局所的自己相関パターンとグローバルな自己相関傾向の両方を強制する、自己相関誘導半教師付き学習戦略が含まれている。
我々は,DeepLATTEの公開データを用いた実演を行い,健康上の重要なトピックとして,高度に適合した複雑な物理環境下での空気質予測を行った。
論文 参考訳(メタデータ) (2021-12-10T03:21:19Z) - Interpretable Additive Recurrent Neural Networks For Multivariate
Clinical Time Series [4.125698836261585]
本稿では,モデル内の変数間の関係を加法的に強制することで,モデルの複雑性と精度のバランスをとるInterpretable-RNN(I-RNN)を提案する。
I-RNNは、時間内に不均一にサンプリングされ、非同期に取得され、データが欠落している臨床時系列の特徴を特に捉えている。
本研究は,院内死亡率予測のためのPhysoronet 2012 ChallengeデータセットのI-RNNモデルと,集中治療室における血行動態の介入を予測するリアルな臨床診断支援タスクについて評価する。
論文 参考訳(メタデータ) (2021-09-15T22:30:19Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - Spatiotemporal convolutional network for time-series prediction and
causal inference [21.895413699349966]
時系列のマルチステップ予測を効率的に正確にレンダリングするために、ニューラルネットワークコンピューティングフレームワークi.N.N.を開発した。
このフレームワークは、人工知能(AI)や機械学習分野の実践的応用において大きな可能性を秘めている。
論文 参考訳(メタデータ) (2021-07-03T06:20:43Z) - An Enhanced Adversarial Network with Combined Latent Features for
Spatio-Temporal Facial Affect Estimation in the Wild [1.3007851628964147]
本稿では,遅延特徴に基づく時間的モデリングにより,空間的特徴と時間的特徴の両方を効率的に抽出する新しいモデルを提案する。
提案モデルは3つの主要ネットワークから成り,造語生成器,判別器,コンビネータを用いて,適応型アテンションモジュールを実現するために,敵対的な学習環境において訓練を行う。
論文 参考訳(メタデータ) (2021-02-18T04:10:12Z) - Spatio-Temporal Functional Neural Networks [11.73856529960872]
本稿では,多くの研究者によって有効性が証明された時間回帰モデルであるニューラル・ファンクショナル・ネットワーク(FNN)の2つの新しい拡張を提案する。
提案したモデルは気象分野における実用的で挑戦的な降水予測問題を解決するために展開される。
論文 参考訳(メタデータ) (2020-09-11T21:32:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。