論文の概要: Spatiotemporal convolutional network for time-series prediction and
causal inference
- arxiv url: http://arxiv.org/abs/2107.01353v1
- Date: Sat, 3 Jul 2021 06:20:43 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-06 15:11:25.448086
- Title: Spatiotemporal convolutional network for time-series prediction and
causal inference
- Title(参考訳): 時系列予測と因果推論のための時空間畳み込みネットワーク
- Authors: Hao Peng, Pei Chen, Rui Liu, Luonan Chen
- Abstract要約: 時系列のマルチステップ予測を効率的に正確にレンダリングするために、ニューラルネットワークコンピューティングフレームワークi.N.N.を開発した。
このフレームワークは、人工知能(AI)や機械学習分野の実践的応用において大きな可能性を秘めている。
- 参考スコア(独自算出の注目度): 21.895413699349966
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Making predictions in a robust way is not easy for nonlinear systems. In this
work, a neural network computing framework, i.e., a spatiotemporal
convolutional network (STCN), was developed to efficiently and accurately
render a multistep-ahead prediction of a time series by employing a
spatial-temporal information (STI) transformation. The STCN combines the
advantages of both the temporal convolutional network (TCN) and the STI
equation, which maps the high-dimensional/spatial data to the future temporal
values of a target variable, thus naturally providing the prediction of the
target variable. From the observed variables, the STCN also infers the causal
factors of the target variable in the sense of Granger causality, which are in
turn selected as effective spatial information to improve the prediction
robustness. The STCN was successfully applied to both benchmark systems and
real-world datasets, all of which show superior and robust performance in
multistep-ahead prediction, even when the data were perturbed by noise. From
both theoretical and computational viewpoints, the STCN has great potential in
practical applications in artificial intelligence (AI) or machine learning
fields as a model-free method based only on the observed data, and also opens a
new way to explore the observed high-dimensional data in a dynamical manner for
machine learning.
- Abstract(参考訳): 非線形システムでは、堅牢な方法で予測することは容易ではない。
本研究では,空間時空間情報(sti)変換を用いて時系列の多段階予測を効率的に高精度に行うために,時空間畳み込みネットワーク(stcn)と呼ばれるニューラルネットワーク計算フレームワークを開発した。
STCNは、時間畳み込みネットワーク(TCN)とSTI方程式の両方の利点を結合し、高次元/空間データを対象変数の将来の時間値にマッピングすることで、対象変数の予測を自然に提供する。
観測された変数から、STCNはまた、目標変数の因果因子をグランガー因果性(Granger causality)の意味で推論し、それが有効空間情報として選択され、予測ロバスト性を改善する。
stcnはベンチマークシステムと実世界のデータセットの両方にうまく適用され、データがノイズによって混乱した場合でも、マルチステップ・アヘッド予測において優れた性能と堅牢性を示している。
理論と計算の両面から、STCNは観測データのみに基づくモデルフリーな手法として、人工知能(AI)や機械学習分野の実践的応用に大きな可能性を秘めており、また、機械学習のダイナミックな方法で観測された高次元データを探索する新たな方法を開く。
関連論文リスト
- Dynamical system prediction from sparse observations using deep neural networks with Voronoi tessellation and physics constraint [12.638698799995815]
本稿では,Voronoi Tessellation (DSOVT) フレームワークを用いたスパース観測からの動的システム予測について紹介する。
ボロノイテッセルレーションと深層学習モデルを統合することで、DSOVTは疎く非構造的な観測で力学系の予測に適している。
純粋にデータ駆動モデルと比較して、我々の物理学に基づくアプローチは、明示的に定式化された力学の中で物理法則を学習することができる。
論文 参考訳(メタデータ) (2024-08-31T13:43:52Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - Brain-Inspired Spiking Neural Network for Online Unsupervised Time
Series Prediction [13.521272923545409]
連続学習に基づく非教師付きリカレントスパイキングニューラルネットワークモデル(CLURSNN)を提案する。
CLURSNNは、ランダム遅延埋め込み(Random Delay Embedding)を使用して基盤となる動的システムを再構築することで、オンライン予測を行う。
提案手法は,進化するロレンツ63力学系を予測する際に,最先端のDNNモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-04-10T16:18:37Z) - Space-Time Graph Neural Networks with Stochastic Graph Perturbations [100.31591011966603]
時空間グラフニューラルネットワーク(ST-GNN)は、時間変動データの効率的なグラフ表現を学習する。
本稿では,ST-GNNの特性を再検討し,安定なグラフ安定性を示す。
解析の結果,ST-GNNは時間変化グラフ上での移動学習に適していることが示唆された。
論文 参考訳(メタデータ) (2022-10-28T16:59:51Z) - Statistical process monitoring of artificial neural networks [1.3213490507208525]
機械学習では、入力と出力の間の学習された関係は、モデルのデプロイの間も有効でなければならない。
本稿では,データストリームの非定常化開始時刻を決定するために,ANNが生成するデータ(埋め込み)の潜在的特徴表現について検討する。
論文 参考訳(メタデータ) (2022-09-15T16:33:36Z) - Probabilistic AutoRegressive Neural Networks for Accurate Long-range
Forecasting [6.295157260756792]
確率的自己回帰ニューラルネットワーク(PARNN)について紹介する。
PARNNは、非定常性、非線形性、非調和性、長距離依存、カオスパターンを示す複雑な時系列データを扱うことができる。
本研究では,Transformers,NBeats,DeepARなどの標準統計モデル,機械学習モデル,ディープラーニングモデルに対して,PARNNの性能を評価する。
論文 参考訳(メタデータ) (2022-04-01T17:57:36Z) - Emulating Spatio-Temporal Realizations of Three-Dimensional Isotropic
Turbulence via Deep Sequence Learning Models [24.025975236316842]
最先端のディープラーニング技術を用いて3次元乱流をモデル化するために,データ駆動方式を用いる。
モデルの精度は、統計および物理に基づくメトリクスを用いて評価される。
論文 参考訳(メタデータ) (2021-12-07T03:33:39Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - Spatio-Temporal Graph Scattering Transform [54.52797775999124]
グラフニューラルネットワークは、十分な高品質のトレーニングデータがないために、現実のシナリオでは実用的ではないかもしれない。
我々は時間的データを解析するための数学的に設計された新しいフレームワークを考案した。
論文 参考訳(メタデータ) (2020-12-06T19:49:55Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。