論文の概要: A Survey on Visual Anomaly Detection: Challenge, Approach, and Prospect
- arxiv url: http://arxiv.org/abs/2401.16402v1
- Date: Mon, 29 Jan 2024 18:41:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-30 13:27:16.062468
- Title: A Survey on Visual Anomaly Detection: Challenge, Approach, and Prospect
- Title(参考訳): 視覚異常検出に関する調査 : 挑戦,アプローチ,展望
- Authors: Yunkang Cao, Xiaohao Xu, Jiangning Zhang, Yuqi Cheng, Xiaonan Huang,
Guansong Pang, Weiming Shen
- Abstract要約: 視覚異常検出(VAD)は、視覚データの正常性の概念から逸脱を識別する試みであり、工業的欠陥検査や医学的病変検出など、様々な領域に広く適用されている。
本調査は,1)トレーニングデータの不足,2)視覚的モダリティの多様性,3)階層的異常の複雑さの3つの主要な課題を同定することにより,最近のVADの進歩を包括的に検証する。
- 参考スコア(独自算出の注目度): 29.006716009327032
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual Anomaly Detection (VAD) endeavors to pinpoint deviations from the
concept of normality in visual data, widely applied across diverse domains,
e.g., industrial defect inspection, and medical lesion detection. This survey
comprehensively examines recent advancements in VAD by identifying three
primary challenges: 1) scarcity of training data, 2) diversity of visual
modalities, and 3) complexity of hierarchical anomalies. Starting with a brief
overview of the VAD background and its generic concept definitions, we
progressively categorize, emphasize, and discuss the latest VAD progress from
the perspective of sample number, data modality, and anomaly hierarchy. Through
an in-depth analysis of the VAD field, we finally summarize future developments
for VAD and conclude the key findings and contributions of this survey.
- Abstract(参考訳): 視覚異常検出(VAD)は、視覚データの正常性の概念から逸脱を識別する試みであり、工業的欠陥検査や医学的病変検出など様々な領域に広く適用されている。
本調査は,vadの最近の進歩を包括的に検討し,次の3つの課題を明らかにする。
1)訓練データの不足、
2)視覚的モダリティの多様性,及び
3)階層的異常の複雑さ。
vadの背景とその一般的な概念定義の簡単な概要から始め、サンプル数、データモダリティ、異常階層の観点から、段階的にvadの進歩を分類し、強調し、議論する。
VAD分野の詳細な分析を通じて、最終的にVADの今後の展開を要約し、この調査の重要な発見と貢献をまとめる。
関連論文リスト
- Out-of-Distribution Detection on Graphs: A Survey [58.47395497985277]
グラフアウト・オブ・ディストリビューション(GOOD)検出は、トレーニング中に見られる分布から逸脱するグラフデータを特定することに焦点を当てる。
既存の手法を,拡張ベース,再構築ベース,情報伝達ベース,分類ベースという4つのタイプに分類する。
本稿では,グラフデータによるユニークな課題を浮き彫りにして,実践的応用と理論的基礎について論じる。
論文 参考訳(メタデータ) (2025-02-12T04:07:12Z) - Foundation Models for Anomaly Detection: Vision and Challenges [19.2255593926904]
ファンデーションモデル(FM)は、異常検出を前進させる強力なツールとして登場した。
本調査では,FMによる異常検出の最近の進歩を概観する。
論文 参考訳(メタデータ) (2025-02-10T05:01:08Z) - MG-3D: Multi-Grained Knowledge-Enhanced 3D Medical Vision-Language Pre-training [7.968487067774351]
3次元医用画像解析は多くの臨床応用において重要である。
3次元医用画像解析では、大規模視覚言語による事前訓練がまだ検討されていない。
大規模データ(47.1K)に基づいて事前学習したMG-3Dを提案する。
論文 参考訳(メタデータ) (2024-12-08T09:45:59Z) - Deep Learning for Video Anomaly Detection: A Review [52.74513211976795]
ビデオ異常検出(VAD)は、ビデオの正常性から逸脱する行動や事象を発見することを目的としている。
ディープラーニングの時代には、VADタスクには、さまざまなディープラーニングベースの方法が常に現れています。
このレビューでは、半教師付き、弱教師付き、完全教師付き、非教師付き、オープンセットの5つのカテゴリのスペクトルについて取り上げる。
論文 参考訳(メタデータ) (2024-09-09T07:31:16Z) - Generalized Out-of-Distribution Detection and Beyond in Vision Language Model Era: A Survey [107.08019135783444]
VLM時代のAD, ND, OSR, OOD, ODの進化をカプセル化した一般OOD検出v2を提案する。
我々のフレームワークは、いくつかのフィールド不活性と統合により、要求される課題がOOD検出とADになっていることを明らかにしている。
論文 参考訳(メタデータ) (2024-07-31T17:59:58Z) - Video Anomaly Detection in 10 Years: A Survey and Outlook [10.143205531474907]
ビデオ異常検出(VAD)は、監視、医療、環境監視といった様々な領域において非常に重要である。
この調査では、従来の教師付きトレーニングパラダイムを超えて、弱教師付き、自己監督型、教師なしのアプローチを包含する、ディープラーニングベースのVADを調査している。
論文 参考訳(メタデータ) (2024-05-29T17:56:31Z) - RadGenome-Chest CT: A Grounded Vision-Language Dataset for Chest CT Analysis [56.57177181778517]
RadGenome-Chest CTはCT-RATEに基づく大規模3次元胸部CT解釈データセットである。
私たちは、最新の強力なユニバーサルセグメンテーションと大きな言語モデルを活用して、元のデータセットを拡張します。
論文 参考訳(メタデータ) (2024-04-25T17:11:37Z) - A Survey on Domain Generalization for Medical Image Analysis [9.410880477358942]
MedIAのドメイン一般化は、未知のデータ分散を効果的に一般化し、堅牢に実行することで、ドメインシフトの課題に対処することを目的としている。
医療分野におけるドメインシフトとドメイン一般化の正式な定義を提供し、関連するいくつかの設定について議論する。
データ操作レベル,特徴表現レベル,モデルトレーニングレベルという3つの視点から,最近の手法を要約し,いくつかのアルゴリズムを詳細に提示する。
論文 参考訳(メタデータ) (2024-02-07T17:08:27Z) - AlignTransformer: Hierarchical Alignment of Visual Regions and Disease
Tags for Medical Report Generation [50.21065317817769]
本稿では,Align Hierarchical Attention (AHA)とMulti-Grained Transformer (MGT)モジュールを含むAlign Transformerフレームワークを提案する。
パブリックなIU-XrayとMIMIC-CXRデータセットの実験は、AlignTransformerが2つのデータセットの最先端メソッドと競合する結果が得られることを示している。
論文 参考訳(メタデータ) (2022-03-18T13:43:53Z) - A Survey of Visual Sensory Anomaly Detection [53.23336329817023]
視覚感覚異常検出(AD)はコンピュータビジョンにおいて重要な問題である。
視覚感覚のADとカテゴリーを,異常の形で3段階にまとめて検討した。
論文 参考訳(メタデータ) (2022-02-14T19:50:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。