論文の概要: Generalized Out-of-Distribution Detection and Beyond in Vision Language Model Era: A Survey
- arxiv url: http://arxiv.org/abs/2407.21794v1
- Date: Wed, 31 Jul 2024 17:59:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-01 17:31:11.864382
- Title: Generalized Out-of-Distribution Detection and Beyond in Vision Language Model Era: A Survey
- Title(参考訳): 一般化された分布外検出と視覚言語モデル時代の超越:調査
- Authors: Atsuyuki Miyai, Jingkang Yang, Jingyang Zhang, Yifei Ming, Yueqian Lin, Qing Yu, Go Irie, Shafiq Joty, Yixuan Li, Hai Li, Ziwei Liu, Toshihiko Yamasaki, Kiyoharu Aizawa,
- Abstract要約: VLM時代のAD, ND, OSR, OOD, ODの進化をカプセル化した一般OOD検出v2を提案する。
我々のフレームワークは、いくつかのフィールド不活性と統合により、要求される課題がOOD検出とADになっていることを明らかにしている。
- 参考スコア(独自算出の注目度): 107.08019135783444
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detecting out-of-distribution (OOD) samples is crucial for ensuring the safety of machine learning systems and has shaped the field of OOD detection. Meanwhile, several other problems are closely related to OOD detection, including anomaly detection (AD), novelty detection (ND), open set recognition (OSR), and outlier detection (OD). To unify these problems, a generalized OOD detection framework was proposed, taxonomically categorizing these five problems. However, Vision Language Models (VLMs) such as CLIP have significantly changed the paradigm and blurred the boundaries between these fields, again confusing researchers. In this survey, we first present a generalized OOD detection v2, encapsulating the evolution of AD, ND, OSR, OOD detection, and OD in the VLM era. Our framework reveals that, with some field inactivity and integration, the demanding challenges have become OOD detection and AD. In addition, we also highlight the significant shift in the definition, problem settings, and benchmarks; we thus feature a comprehensive review of the methodology for OOD detection, including the discussion over other related tasks to clarify their relationship to OOD detection. Finally, we explore the advancements in the emerging Large Vision Language Model (LVLM) era, such as GPT-4V. We conclude this survey with open challenges and future directions.
- Abstract(参考訳): オフ・オブ・ディストリビューション(OOD)サンプルの検出は、機械学習システムの安全性を確保する上で不可欠であり、OOD検出の分野を形成している。
一方、他のいくつかの問題は、異常検出(AD)、新規検出(ND)、オープンセット認識(OSR)、外れ値検出(OD)など、OOD検出と密接に関連している。
これらの問題を分類学的に分類した一般化OOD検出フレームワークが提案された。
しかし、CLIPのようなビジョン言語モデル(VLM)はパラダイムを大きく変え、これらの領域の境界を曖昧にし、研究者を混乱させた。
本調査では, VLM時代のAD, ND, OSR, OOD, ODの進化をカプセル化した一般OOD検出v2を最初に提示する。
我々のフレームワークは、いくつかのフィールド不活性と統合により、要求される課題がOOD検出とADになっていることを明らかにしている。
さらに、我々は、OOD検出の方法論を包括的に検討し、OOD検出との関係を明らかにするために、他の関連するタスクに関する議論を含め、その定義、問題設定、ベンチマークの大幅な変化を強調した。
最後に、GPT-4VのようなLVLM(Large Vision Language Model)時代の進展について検討する。
この調査はオープンな課題と今後の方向性で締めくくります。
関連論文リスト
- The Best of Both Worlds: On the Dilemma of Out-of-distribution Detection [75.65876949930258]
アウト・オブ・ディストリビューション(OOD)検出はモデル信頼性に不可欠である。
我々は,OODの一般化能力を秘かに犠牲にすることで,最先端手法のOOD検出性能が向上することを示す。
論文 参考訳(メタデータ) (2024-10-12T07:02:04Z) - Large Language Models for Anomaly and Out-of-Distribution Detection: A Survey [18.570066068280212]
大規模言語モデル(LLM)は、自然言語処理だけでなく、より広範なアプリケーションでもその効果を実証している。
本調査は,LSMの文脈下での異常検出とOOD検出の問題点に焦点を当てた。
LLMが果たす役割に基づいて,既存のアプローチを2つのクラスに分類する新たな分類法を提案する。
論文 参考訳(メタデータ) (2024-09-03T15:22:41Z) - Unifying Unsupervised Graph-Level Anomaly Detection and Out-of-Distribution Detection: A Benchmark [73.58840254552656]
近年,非教師付きグラフレベルの異常検出(GLAD)と教師なしグラフレベルのアウト・オブ・ディストリビューション(OOD)検出が注目されている。
教師なしグラフレベルのOODと異常検出のための統一ベンチマーク(我々の方法)を提案する。
我々のベンチマークでは、4つの実用的な異常とOOD検出シナリオにまたがる35のデータセットを網羅している。
我々は,既存手法の有効性,一般化性,堅牢性,効率性について多次元解析を行った。
論文 参考訳(メタデータ) (2024-06-21T04:07:43Z) - Rethinking Out-of-Distribution Detection for Reinforcement Learning: Advancing Methods for Evaluation and Detection [3.7384109981836158]
強化学習(RL)におけるアウト・オブ・ディストリビューション(OOD)検出の問題点について検討する。
本稿では、RLにおけるOOD検出の用語の明確化を提案し、他の機械学習分野の文献と整合する。
OOD検出のための新しいベンチマークシナリオを提案し、エージェント環境ループの異なるコンポーネントに時間的自己相関を伴う異常を導入する。
DEXTERはベンチマークシナリオ間の異常を確実に識別でき、統計から得られた最先端のOOD検出器や高次元変化点検出器と比較して優れた性能を示す。
論文 参考訳(メタデータ) (2024-04-10T15:39:49Z) - Out-of-Distribution Data: An Acquaintance of Adversarial Examples -- A Survey [7.891552999555933]
現実世界のアプリケーションにデプロイされるディープニューラルネットワーク(DNN)は、アウト・オブ・ディストリビューション(OOD)データや敵の例に遭遇する可能性がある。
伝統的に、OODの検出と敵の堅牢性は別の課題として対処されてきた。
本調査は, この2つの領域の交点に着目し, 研究コミュニティが共同研究を行った経緯について考察する。
論文 参考訳(メタデータ) (2024-04-08T06:27:38Z) - Exploring Large Language Models for Multi-Modal Out-of-Distribution
Detection [67.68030805755679]
大きな言語モデル(LLM)は豊富な世界の知識をエンコードし、クラスごとに記述的な特徴を生成するよう促すことができる。
本稿では,LLMの選択的生成によるOOD検出性能向上のための世界知識の適用を提案する。
論文 参考訳(メタデータ) (2023-10-12T04:14:28Z) - Classical Out-of-Distribution Detection Methods Benchmark in Text
Classification Tasks [0.0]
最先端モデルは、制御された環境でうまく機能するが、アウト・オブ・ディストリビューション(OOD)の例を提示すると、しばしば苦労する。
本稿では,NLPにおけるOOD検出に対する既存のアプローチの限界を強調することに焦点を当てる。
論文 参考訳(メタデータ) (2023-07-13T18:06:12Z) - Beyond AUROC & co. for evaluating out-of-distribution detection
performance [50.88341818412508]
安全(r)AIとの関連性を考えると,OOD検出法の比較の基礎が実用的ニーズと整合しているかどうかを検討することが重要である。
我々は,IDとOODの分離が不十分なことを明示する新しい指標であるAUTC(Area Under the Threshold Curve)を提案する。
論文 参考訳(メタデータ) (2023-06-26T12:51:32Z) - Generalized Out-of-Distribution Detection: A Survey [83.0449593806175]
アウト・オブ・ディストリビューション(OOD)検出は、機械学習システムの信頼性と安全性を確保するために重要である。
その他の問題として、異常検出(AD)、新規検出(ND)、オープンセット認識(OSR)、異常検出(OD)などがある。
まず、上記の5つの問題を含む一般化OOD検出という統合されたフレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-21T17:59:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。