論文の概要: Informal Safety Guarantees for Simulated Optimizers Through
Extrapolation from Partial Simulations
- arxiv url: http://arxiv.org/abs/2401.16426v1
- Date: Wed, 29 Nov 2023 09:32:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-11 17:44:09.401402
- Title: Informal Safety Guarantees for Simulated Optimizers Through
Extrapolation from Partial Simulations
- Title(参考訳): 部分シミュレーションからの外挿によるシミュレーションオプティマイザのインフォーマル安全性保証
- Authors: Luke Marks
- Abstract要約: 自己教師付き学習は、最先端の言語モデリングのバックボーンである。
自己教師付きデータセットにおける予測損失を伴うトレーニングはシミュレータを引き起こすと論じられている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Self-supervised learning is the backbone of state of the art language
modeling. It has been argued that training with predictive loss on a
self-supervised dataset causes simulators: entities that internally represent
possible configurations of real-world systems. Under this assumption, a
mathematical model for simulators is built based in the Cartesian frames model
of embedded agents, which is extended to multi-agent worlds through scaling a
two-dimensional frame to arbitrary dimensions, where literature prior chooses
to instead use operations on frames. This variant leveraging scaling
dimensionality is named the Cartesian object, and is used to represent
simulations (where individual simulacra are the agents and devices in that
object). Around the Cartesian object, functions like token selection and
simulation complexity are accounted for in formalizing the behavior of a
simulator, and used to show (through the L\"obian obstacle) that a proof of
alignment between simulacra by inspection of design is impossible in the
simulator context. Following this, a scheme is proposed and termed Partial
Simulation Extrapolation aimed at circumventing the L\"obian obstacle through
the evaluation of low-complexity simulations.
- Abstract(参考訳): 自己監督学習は、最先端の芸術言語モデリングのバックボーンである。
自己教師付きデータセットでの予測損失を伴うトレーニングはシミュレータを引き起こす、と論じられている: 実世界のシステムの構成を内部的に表現するエンティティ。
この仮定の下で、シミュレーターの数学的モデルは、埋め込みエージェントのデカルト的フレームモデルに基づいて構築され、2次元のフレームを任意の次元にスケールすることでマルチエージェントの世界に拡張される。
スケーリング次元を利用するこの変種はデカルト対象と呼ばれ、シミュレーション(個々のシムラクラがその対象のエージェントとデバイスである)を表現するのに使用される。
直交対象の周囲では、シミュレータの動作を形式化するためにトークン選択やシミュレーションの複雑さといった関数が説明され、シミュレータの文脈では、設計の検査によるシムラクラ間のアライメントの証明が不可能であることを示すために(l\"obian obstacle")用いられる。
続いて,低複雑度シミュレーションの評価を通じてl\"obian obstacleを回避することを目的とした部分的シミュレーション外挿法を提案する。
関連論文リスト
- Embed and Emulate: Contrastive representations for simulation-based inference [11.543221890134399]
本稿では,新しいシミュレーションベース推論(SBI)手法であるEmbed and Emulate(E&E)を紹介する。
E&Eはデータと対応する高速エミュレータの低次元潜伏埋め込みを潜伏空間に学習する。
本研究では,現実的なパラメータ推定タスクにおいて,既存の手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-09-27T02:37:01Z) - GIC: Gaussian-Informed Continuum for Physical Property Identification and Simulation [60.33467489955188]
本稿では,視覚的観察を通して物理特性(システム同定)を推定する問題について検討する。
物理特性推定における幾何学的ガイダンスを容易にするために,我々は新しいハイブリッドフレームワークを提案する。
本研究では,3次元ガウス点集合としてオブジェクトを復元する動き分解に基づく動的3次元ガウスフレームワークを提案する。
抽出された物体表面に加えて、ガウスインフォームド連続体はシミュレーション中の物体マスクのレンダリングを可能にする。
論文 参考訳(メタデータ) (2024-06-21T07:37:17Z) - All-in-one simulation-based inference [19.41881319338419]
我々は、現在の制限を克服する新しい償却推論手法、Simformerを提案する。
Simformerは、ベンチマークタスクにおける現在の最先端の償却推論アプローチより優れています。
関数値パラメータを持つモデルに適用することができ、欠落または非構造化データによる推論シナリオを処理でき、パラメータとデータの合同分布の任意の条件をサンプリングすることができる。
論文 参考訳(メタデータ) (2024-04-15T10:12:33Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymaxは、マルチエージェントシーンにおける自動運転のための新しいデータ駆動シミュレータである。
TPU/GPUなどのハードウェアアクセラレータで完全に動作し、トレーニング用のグラフ内シミュレーションをサポートする。
我々は、一般的な模倣と強化学習アルゴリズムのスイートをベンチマークし、異なる設計決定に関するアブレーション研究を行った。
論文 参考訳(メタデータ) (2023-10-12T20:49:15Z) - Near-realtime Facial Animation by Deep 3D Simulation Super-Resolution [7.14576106770047]
本稿では,低コストでリアルタイムな物理シミュレーションによって生み出す顔のパフォーマンスを効率よく,現実的に向上させるニューラルネットワークに基づくシミュレーションフレームワークを提案する。
顔のアニメーションをこのようなシミュレーション領域の例に用いて,2つのシミュレータで同じ筋の運動制御と骨格のポーズを単純にダイヤルすることで,この意味の一致を創り出すことができる。
提案するニューラルネットワーク超解像フレームワークは,このトレーニングセットから未確認表現を一般化し,リアルタイム変種における解像度の制限やコスト削減近似による2つのシミュレーション間の不一致をモデル化するための補償を行うとともに,意味記述子やパラメータを必要としない。
論文 参考訳(メタデータ) (2023-05-05T00:09:24Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
我々は,データ駆動型交通シミュレーションを世界モデルとして定式化できることを示した。
動作予測とエンドツーエンドの運転に基づくマルチエージェントポリシーであるTrafficBotsを紹介する。
オープンモーションデータセットの実験は、TrafficBotsが現実的なマルチエージェント動作をシミュレートできることを示している。
論文 参考訳(メタデータ) (2023-03-07T18:28:41Z) - Deep Learning-based Spatially Explicit Emulation of an Agent-Based
Simulator for Pandemic in a City [0.6875312133832077]
エージェントベースモデルは、都市におけるパンデミックの拡散など、物理的または社会的プロセスのシミュレーションに有用である。
このようなモデルは計算には非常に高価であり、複雑度はしばしばエージェントの総数で線形である。
本稿では,エージェントベースモデルを高精度にエミュレート可能なDilated Convolutional Neural Networkに基づくディープラーニングモデルについて論じる。
論文 参考訳(メタデータ) (2022-05-28T10:56:37Z) - RISP: Rendering-Invariant State Predictor with Differentiable Simulation
and Rendering for Cross-Domain Parameter Estimation [110.4255414234771]
既存のソリューションでは、大量のトレーニングデータが必要か、未知のレンダリング設定への一般化性が欠如している。
本稿では、ドメインのランダム化と微分可能なレンダリング勾配を併用してこの問題に対処する手法を提案する。
提案手法は, 再構成誤差を大幅に低減し, 未知のレンダリング構成間の一般化性が向上する。
論文 参考訳(メタデータ) (2022-05-11T17:59:51Z) - Likelihood-Free Inference in State-Space Models with Unknown Dynamics [71.94716503075645]
本研究では、状態空間モデルにおいて、観測をシミュレートすることしかできず、遷移ダイナミクスが不明な潜在状態の推測と予測を行う手法を提案する。
本研究では,限られた数のシミュレーションで状態予測と状態予測を行う手法を提案する。
論文 参考訳(メタデータ) (2021-11-02T12:33:42Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
最先端運転シミュレータを用いて,テストシナリオを特徴付け,生成するための効率的なメカニズムを提案する。
次世代シミュレーション(NGSIM)プロジェクトにおける実運転データの特徴付けに本手法を用いる。
事故回避の複雑さに基づいてメトリクスを定義してシナリオをランク付けし、事故発生の可能性を最小限に抑えるための洞察を提供します。
論文 参考訳(メタデータ) (2021-03-12T17:00:23Z) - A Doubly Stochastic Simulator with Applications in Arrivals Modeling and
Simulation [8.808993671472349]
本稿では,モンテカルロシミュレータとワッサーシュタイン生成逆数ネットワークを統合して,広範囲の到着過程をモデル化し,推定し,シミュレーションするフレームワークを提案する。
古典的モンテカルロシミュレータはポアソンオブジェクトの解釈可能な「物理」を捉えるのに利点があるが、ニューラルネットベースのシミュレータは高次元分布における解釈できない複雑な依存を捉えるのに利点がある。
論文 参考訳(メタデータ) (2020-12-27T13:32:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。