論文の概要: Embed and Emulate: Contrastive representations for simulation-based inference
- arxiv url: http://arxiv.org/abs/2409.18402v1
- Date: Fri, 27 Sep 2024 02:37:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 06:31:22.321664
- Title: Embed and Emulate: Contrastive representations for simulation-based inference
- Title(参考訳): 埋め込みとエミュレート:シミュレーションに基づく推論のためのコントラスト表現
- Authors: Ruoxi Jiang, Peter Y. Lu, Rebecca Willett,
- Abstract要約: 本稿では,新しいシミュレーションベース推論(SBI)手法であるEmbed and Emulate(E&E)を紹介する。
E&Eはデータと対応する高速エミュレータの低次元潜伏埋め込みを潜伏空間に学習する。
本研究では,現実的なパラメータ推定タスクにおいて,既存の手法よりも優れた性能を示す。
- 参考スコア(独自算出の注目度): 11.543221890134399
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scientific modeling and engineering applications rely heavily on parameter estimation methods to fit physical models and calibrate numerical simulations using real-world measurements. In the absence of analytic statistical models with tractable likelihoods, modern simulation-based inference (SBI) methods first use a numerical simulator to generate a dataset of parameters and simulated outputs. This dataset is then used to approximate the likelihood and estimate the system parameters given observation data. Several SBI methods employ machine learning emulators to accelerate data generation and parameter estimation. However, applying these approaches to high-dimensional physical systems remains challenging due to the cost and complexity of training high-dimensional emulators. This paper introduces Embed and Emulate (E&E): a new SBI method based on contrastive learning that efficiently handles high-dimensional data and complex, multimodal parameter posteriors. E&E learns a low-dimensional latent embedding of the data (i.e., a summary statistic) and a corresponding fast emulator in the latent space, eliminating the need to run expensive simulations or a high dimensional emulator during inference. We illustrate the theoretical properties of the learned latent space through a synthetic experiment and demonstrate superior performance over existing methods in a realistic, non-identifiable parameter estimation task using the high-dimensional, chaotic Lorenz 96 system.
- Abstract(参考訳): 科学モデリングと工学の応用は、物理モデルに適合するパラメータ推定法に大きく依存し、実世界の測定を用いて数値シミュレーションを校正する。
抽出可能な確率を持つ解析統計モデルがないため、現代のシミュレーションベース推論(SBI)法はまず数値シミュレータを用いてパラメータのデータセットとシミュレーション出力を生成する。
このデータセットは、観測データから得られた確率を近似し、システムパラメータを推定するために使用される。
いくつかのSBI手法では、データ生成とパラメータ推定を高速化するために機械学習エミュレータを使用している。
しかし、これらのアプローチを高次元物理系に適用することは、高次元エミュレータを訓練するコストと複雑さのため、依然として困難である。
本稿では,高次元データと複雑なマルチモーダルパラメータ後部を効率的に処理するコントラスト学習に基づく新しいSBI手法であるEmbed and Emulate(E&E)を紹介する。
E&Eは、データ(要約統計学)とそれに対応する高速エミュレータの低次元埋め込みを学び、推論中に高価なシミュレーションや高次元エミュレータを実行する必要がなくなる。
合成実験により学習した潜伏空間の理論的性質を説明し, 高次元のカオスロレンツ96システムを用いて, 現実的, 非同定可能なパラメータ推定タスクにおいて, 既存の手法よりも優れた性能を示す。
関連論文リスト
- Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Addressing computational challenges in physical system simulations with
machine learning [0.0]
シミュレーションを利用して様々な物理システムやプロセスを調べる研究者を支援する機械学習ベースのデータジェネレータフレームワークを提案する。
まず、シミュレーション結果を予測するために、限られたシミュレートされたデータセットを使用して教師付き予測モデルをトレーニングする。
その後、強化学習エージェントを訓練し、教師付きモデルを利用して正確なシミュレーションライクなデータを生成する。
論文 参考訳(メタデータ) (2023-05-16T17:31:50Z) - Embed and Emulate: Learning to estimate parameters of dynamical systems
with uncertainty quantification [11.353411236854582]
本稿では,高次元力学系の不確実性を考慮したパラメータ推定のための学習エミュレータについて検討する。
私たちのタスクは、基礎となるパラメータの可能性のある値の範囲を正確に見積もることです。
結合した396次元のマルチスケールロレンツ96系において,本手法は典型的なパラメータ推定法よりも優れていた。
論文 参考訳(メタデータ) (2022-11-03T01:59:20Z) - Neural Posterior Estimation with Differentiable Simulators [58.720142291102135]
微分可能シミュレータを用いてニューラル・ポストミラー推定(NPE)を行う新しい手法を提案する。
勾配情報が後部形状の制約にどのように役立ち、試料効率を向上させるかを示す。
論文 参考訳(メタデータ) (2022-07-12T16:08:04Z) - Synthetic Data-Based Simulators for Recommender Systems: A Survey [55.60116686945561]
本調査は,モデリングとシミュレーションの分野における最近のトレンドを包括的に概観することを目的としている。
まずは、シミュレーターを実装するフレームワークの開発の背後にあるモチベーションから始めます。
我々は,既存のシミュレータの機能,近似,産業的有効性に基づいて,新しい一貫した一貫した分類を行う。
論文 参考訳(メタデータ) (2022-06-22T19:33:21Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process(INP)は、シミュレーションとアクティブな学習アプローチのためのディープラーニングフレームワークである。
能動的学習のために,NPベースモデルの潜時空間で計算された新しい取得関数Latent Information Gain (LIG)を提案する。
その結果,STNPは学習環境のベースラインを上回り,LIGは能動学習の最先端を達成していることがわかった。
論文 参考訳(メタデータ) (2021-06-05T01:31:51Z) - Simulation-based inference methods for particle physics [12.451050883955071]
高次元LHCデータの可能性関数が明示的に評価できない理由、なぜこれがデータ解析に重要であるのか、そしてこの問題を回避するためにフィールドが伝統的に行ってきたことを再検討する。
次に,機械学習技術とシミュレータからの情報を組み合わせることで,高次元データを直接解析するシミュレーションベース推論手法について検討する。
論文 参考訳(メタデータ) (2020-10-13T14:55:28Z) - Using Machine Learning to Emulate Agent-Based Simulations [0.0]
エージェントベースモデル(ABM)解析に用いる統計エミュレータとして,複数の機械学習手法の性能評価を行った。
エージェントベースのモデリングは、モデルに対するより堅牢な感度解析を容易にするため、エミュレーションに機械学習を用いる利点がある。
論文 参考訳(メタデータ) (2020-05-05T11:48:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。