Combining topic modelling and citation network analysis to study case
law from the European Court on Human Rights on the right to respect for
private and family life
- URL: http://arxiv.org/abs/2401.16429v1
- Date: Fri, 19 Jan 2024 14:30:35 GMT
- Title: Combining topic modelling and citation network analysis to study case
law from the European Court on Human Rights on the right to respect for
private and family life
- Authors: M. Mohammadi, L. M. Bruijn, M. Wieling, M. Vols
- Abstract summary: This paper focuses on case law from the European Court of Human Rights on Article 8 of the European Convention of Human Rights.
We demonstrate and compare the potential of topic modelling and citation network to find and organize case law on Article 8.
We evaluate the effectiveness of the combined method on a manually collected and annotated dataset of Aricle 8 case law on evictions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As legal case law databases such as HUDOC continue to grow rapidly, it has
become essential for legal researchers to find efficient methods to handle such
large-scale data sets. Such case law databases usually consist of the textual
content of cases together with the citations between them. This paper focuses
on case law from the European Court of Human Rights on Article 8 of the
European Convention of Human Rights, the right to respect private and family
life, home and correspondence. In this study, we demonstrate and compare the
potential of topic modelling and citation network to find and organize case law
on Article 8 based on their general themes and citation patterns, respectively.
Additionally, we explore whether combining these two techniques leads to better
results compared to the application of only one of the methods. We evaluate the
effectiveness of the combined method on a unique manually collected and
annotated dataset of Aricle 8 case law on evictions. The results of our
experiments show that our combined (text and citation-based) approach provides
the best results in finding and grouping case law, providing scholars with an
effective way to extract and analyse relevant cases on a specific issue.
Related papers
- LawLLM: Law Large Language Model for the US Legal System [43.13850456765944]
We introduce the Law Large Language Model (LawLLM), a multi-task model specifically designed for the US legal domain.
LawLLM excels at Similar Case Retrieval (SCR), Precedent Case Recommendation (PCR), and Legal Judgment Prediction (LJP)
We propose customized data preprocessing techniques for each task that transform raw legal data into a trainable format.
arXiv Detail & Related papers (2024-07-27T21:51:30Z) - Learning Interpretable Legal Case Retrieval via Knowledge-Guided Case Reformulation [22.85652668826498]
This paper introduces KELLER, a legal knowledge-guided case reformulation approach based on large language models (LLMs)
By incorporating professional legal knowledge about crimes and law articles, we enable large language models to accurately reformulate the original legal case into concise sub-facts of crimes.
arXiv Detail & Related papers (2024-06-28T08:59:45Z) - CLERC: A Dataset for Legal Case Retrieval and Retrieval-Augmented Analysis Generation [44.67578050648625]
We transform a large open-source legal corpus into a dataset supporting information retrieval (IR) and retrieval-augmented generation (RAG)
This dataset CLERC is constructed for training and evaluating models on their ability to (1) find corresponding citations for a given piece of legal analysis and to (2) compile the text of these citations into a cogent analysis that supports a reasoning goal.
arXiv Detail & Related papers (2024-06-24T23:57:57Z) - Topic Modelling Case Law Using a Large Language Model and a New Taxonomy for UK Law: AI Insights into Summary Judgment [0.0]
This paper develops and applies a novel taxonomy for topic modelling summary judgment cases in the United Kingdom.
Using a curated dataset of summary judgment cases, we use the Large Language Model Claude 3 Opus to explore functional topics and trends.
We find that Claude 3 Opus correctly classified the topic with an accuracy of 87.10%.
arXiv Detail & Related papers (2024-05-21T16:30:25Z) - DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment [55.91429725404988]
We introduce DELTA, a discriminative model designed for legal case retrieval.
We leverage shallow decoders to create information bottlenecks, aiming to enhance the representation ability.
Our approach can outperform existing state-of-the-art methods in legal case retrieval.
arXiv Detail & Related papers (2024-03-27T10:40:14Z) - LLM vs. Lawyers: Identifying a Subset of Summary Judgments in a Large UK
Case Law Dataset [0.0]
This study addresses the gap in the literature working with large legal corpora about how to isolate cases, in our case summary judgments, from a large corpus of UK court decisions.
We use the Cambridge Law Corpus of 356,011 UK court decisions and determine that the large language model achieves a weighted F1 score of 0.94 versus 0.78 for keywords.
We identify and extract 3,102 summary judgment cases, enabling us to map their distribution across various UK courts over a temporal span.
arXiv Detail & Related papers (2024-03-04T10:13:30Z) - MUSER: A Multi-View Similar Case Retrieval Dataset [65.36779942237357]
Similar case retrieval (SCR) is a representative legal AI application that plays a pivotal role in promoting judicial fairness.
Existing SCR datasets only focus on the fact description section when judging the similarity between cases.
We present M, a similar case retrieval dataset based on multi-view similarity measurement and comprehensive legal element with sentence-level legal element annotations.
arXiv Detail & Related papers (2023-10-24T08:17:11Z) - Analysing the Resourcefulness of the Paragraph for Precedence Retrieval [0.1761604268733064]
We analyzed the resourcefulness of paragraph-level information in capturing similarity among judgments for improving the performance of precedence retrieval.
We found that the paragraph-level methods could capture the similarity among the judgments with only a few paragraph interactions and exhibit more discriminating power over the baseline document-level method.
arXiv Detail & Related papers (2023-07-29T08:55:38Z) - SAILER: Structure-aware Pre-trained Language Model for Legal Case
Retrieval [75.05173891207214]
Legal case retrieval plays a core role in the intelligent legal system.
Most existing language models have difficulty understanding the long-distance dependencies between different structures.
We propose a new Structure-Aware pre-traIned language model for LEgal case Retrieval.
arXiv Detail & Related papers (2023-04-22T10:47:01Z) - Pile of Law: Learning Responsible Data Filtering from the Law and a
256GB Open-Source Legal Dataset [46.156169284961045]
We offer an approach to filtering grounded in law, which has directly addressed the tradeoffs in filtering material.
First, we gather and make available the Pile of Law, a 256GB dataset of open-source English-language legal and administrative data.
Second, we distill the legal norms that governments have developed to constrain the inclusion of toxic or private content into actionable lessons.
Third, we show how the Pile of Law offers researchers the opportunity to learn such filtering rules directly from the data.
arXiv Detail & Related papers (2022-07-01T06:25:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.