Sine Activated Low-Rank Matrices for Parameter Efficient Learning
- URL: http://arxiv.org/abs/2403.19243v1
- Date: Thu, 28 Mar 2024 08:58:20 GMT
- Title: Sine Activated Low-Rank Matrices for Parameter Efficient Learning
- Authors: Yiping Ji, Hemanth Saratchandran, Cameron Gordon, Zeyu Zhang, Simon Lucey,
- Abstract summary: We propose a novel theoretical framework that integrates a sinusoidal function within the low-rank decomposition process.
Our method proves to be an enhancement for existing low-rank models, as evidenced by its successful application in Vision Transformers (ViT), Large Language Models (LLMs), Neural Radiance Fields (NeRF)
- Score: 25.12262017296922
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low-rank decomposition has emerged as a vital tool for enhancing parameter efficiency in neural network architectures, gaining traction across diverse applications in machine learning. These techniques significantly lower the number of parameters, striking a balance between compactness and performance. However, a common challenge has been the compromise between parameter efficiency and the accuracy of the model, where reduced parameters often lead to diminished accuracy compared to their full-rank counterparts. In this work, we propose a novel theoretical framework that integrates a sinusoidal function within the low-rank decomposition process. This approach not only preserves the benefits of the parameter efficiency characteristic of low-rank methods but also increases the decomposition's rank, thereby enhancing model accuracy. Our method proves to be an adaptable enhancement for existing low-rank models, as evidenced by its successful application in Vision Transformers (ViT), Large Language Models (LLMs), Neural Radiance Fields (NeRF), and 3D shape modeling. This demonstrates the wide-ranging potential and efficiency of our proposed technique.
Related papers
- LoRTA: Low Rank Tensor Adaptation of Large Language Models [70.32218116940393]
Low Rank Adaptation (LoRA) is a popular Efficient Fine Tuning (PEFT) method that effectively adapts large pre-trained models for downstream tasks.
We propose a novel approach that employs a low rank tensor parametrization for model updates.
Our method is both efficient and effective for fine-tuning large language models, achieving a substantial reduction in the number of parameters while maintaining comparable performance.
arXiv Detail & Related papers (2024-10-05T06:59:50Z) - SaRA: High-Efficient Diffusion Model Fine-tuning with Progressive Sparse Low-Rank Adaptation [52.6922833948127]
In this work, we investigate the importance of parameters in pre-trained diffusion models.
We propose a novel model fine-tuning method to make full use of these ineffective parameters.
Our method enhances the generative capabilities of pre-trained models in downstream applications.
arXiv Detail & Related papers (2024-09-10T16:44:47Z) - LORTSAR: Low-Rank Transformer for Skeleton-based Action Recognition [4.375744277719009]
LORTSAR is applied to two leading Transformer-based models, "Hyperformer" and "STEP-CATFormer"
Our method can reduce the number of model parameters substantially with negligible degradation or even performance increase in recognition accuracy.
This confirms that SVD combined with post-compression fine-tuning can boost model efficiency, paving the way for more sustainable, lightweight, and high-performance technologies in human action recognition.
arXiv Detail & Related papers (2024-07-19T20:19:41Z) - Compressible Dynamics in Deep Overparameterized Low-Rank Learning & Adaptation [12.07880147193174]
We show that by leveraging the inherent low-dimensional structures of data and compressible dynamics within the model parameters, we can reap the benefits of over parameterization without the computational burdens.
We demonstrate the effectiveness of this approach for deep low-rank matrix completion as well as fine-tuning language models.
arXiv Detail & Related papers (2024-06-06T14:29:49Z) - Spectrum-Aware Parameter Efficient Fine-Tuning for Diffusion Models [73.88009808326387]
We propose a novel spectrum-aware adaptation framework for generative models.
Our method adjusts both singular values and their basis vectors of pretrained weights.
We introduce Spectral Ortho Decomposition Adaptation (SODA), which balances computational efficiency and representation capacity.
arXiv Detail & Related papers (2024-05-31T17:43:35Z) - Do deep neural networks utilize the weight space efficiently? [2.9914612342004503]
Deep learning models like Transformers and Convolutional Neural Networks (CNNs) have revolutionized various domains, but their parameter-intensive nature hampers deployment in resource-constrained settings.
We introduce a novel concept utilizing column space and row space of weight matrices, which allows for a substantial reduction in model parameters without compromising performance.
Our approach applies to both Bottleneck and Attention layers, effectively halving the parameters while incurring only minor performance degradation.
arXiv Detail & Related papers (2024-01-26T21:51:49Z) - Boosting Inference Efficiency: Unleashing the Power of Parameter-Shared
Pre-trained Language Models [109.06052781040916]
We introduce a technique to enhance the inference efficiency of parameter-shared language models.
We also propose a simple pre-training technique that leads to fully or partially shared models.
Results demonstrate the effectiveness of our methods on both autoregressive and autoencoding PLMs.
arXiv Detail & Related papers (2023-10-19T15:13:58Z) - E^2VPT: An Effective and Efficient Approach for Visual Prompt Tuning [55.50908600818483]
Fine-tuning large-scale pretrained vision models for new tasks has become increasingly parameter-intensive.
We propose an Effective and Efficient Visual Prompt Tuning (E2VPT) approach for large-scale transformer-based model adaptation.
Our approach outperforms several state-of-the-art baselines on two benchmarks.
arXiv Detail & Related papers (2023-07-25T19:03:21Z) - An Efficient Hierarchical Kriging Modeling Method for High-dimension
Multi-fidelity Problems [0.0]
Multi-fidelity Kriging model is a promising technique in surrogate-based design.
The cost for building a multi-fidelity Kriging model increases significantly with the increase of the problem dimension.
An efficient Hierarchical Kriging modeling method is proposed to attack this issue.
arXiv Detail & Related papers (2022-12-31T15:17:07Z) - Powerpropagation: A sparsity inducing weight reparameterisation [65.85142037667065]
We introduce Powerpropagation, a new weight- parameterisation for neural networks that leads to inherently sparse models.
Models trained in this manner exhibit similar performance, but have a distribution with markedly higher density at zero, allowing more parameters to be pruned safely.
Here, we combine Powerpropagation with a traditional weight-pruning technique as well as recent state-of-the-art sparse-to-sparse algorithms, showing superior performance on the ImageNet benchmark.
arXiv Detail & Related papers (2021-10-01T10:03:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.