Quantum-induced Stochastic Optomechanical Dynamics
- URL: http://arxiv.org/abs/2401.16511v2
- Date: Wed, 09 Oct 2024 19:50:28 GMT
- Title: Quantum-induced Stochastic Optomechanical Dynamics
- Authors: Pedro V. Paraguassú, Luca Abrahão, Thiago Guerreiro,
- Abstract summary: Quantum fluctuations lead to state-dependent non-equilibrium noise, which is exponentially enhanced by wavepacket delocalization.
For the case of nanoparticles coupled by the Coulomb interaction such noise can imprint potentially measurable signatures in multiparticle levitation experiments.
- Score: 0.0
- License:
- Abstract: We study the effective stochastic dynamics of a semiclassical probe induced by linear optomechanical interactions with a quantum oscillator. Quantum fluctuations lead to state-dependent non-equilibrium noise, which is exponentially enhanced by wavepacket delocalization. For the case of nanoparticles coupled by the Coulomb interaction such noise can imprint potentially measurable signatures in multiparticle levitation experiments. Quantum-induced optomechanical fluctuations hold strong analogy to quantum gravitational wave noise and interconnect stochastic thermodynamics, graviton physics and the detection of gravity-mediated entanglement.
Related papers
- Analysis of the confinement string in (2 + 1)-dimensional Quantum Electrodynamics with a trapped-ion quantum computer [0.0]
We consider a (2+1)-dimensional lattice discretization of Quantum Electrodynamics with the inclusion of fermionic matter.
A symmetry-preserving and resource-efficient variational quantum circuit is employed to prepare the ground state of the theory.
We demonstrate that results from quantum experiments on the Quantinuum H1-1 trapped-ion device and emulator, with full connectivity between qubits, agree with classical noiseless simulations.
arXiv Detail & Related papers (2024-11-08T15:18:21Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - Open quantum dynamics of strongly coupled oscillators with
multi-configuration time-dependent Hartree propagation and Markovian quantum
jumps [0.0]
We implement a quantum state trajectory scheme for solving Lindblad quantum master equations.
We show the potential for solving the dissipative dynamics of finite size arrays of strongly interacting quantized oscillators with high excitation densities.
arXiv Detail & Related papers (2022-08-02T03:01:14Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Interaction-driven breakdown of dynamical localization in a kicked
quantum gas [0.0]
Quantum interference can terminate energy growth in a continually kicked system, via a single-particle ergodicity-breaking mechanism known as dynamical localization.
We report the experimental realization of a tunably-interacting kicked quantum rotor ensemble using a Bose-Einstein condensate in a pulsed optical lattice.
Results quantitatively elucidate the dynamical transition to many-body quantum chaos, advance our understanding of quantum anomalous diffusion, and delimit some possibilities for protecting quantum information in interacting systems.
arXiv Detail & Related papers (2021-06-17T17:52:55Z) - Quantum simulation of antiferromagnetic Heisenberg chain with
gate-defined quantum dots [0.0]
Magnetic phases naturally arise in the Mott-insulator regime of the Fermi-Hubbard model.
We show the quantum simulation of magnetism in the Mott-insulator regime with a linear quantum-dot array.
arXiv Detail & Related papers (2021-03-15T09:45:02Z) - Non-equilibrium quantum domain reconfiguration dynamics in a
two-dimensional electronic crystal: experiments and quantum simulations [0.0]
We study quantum domain reconfiguration dynamics in the electronic superlattice of a quantum material.
The crossover from temperature to quantum fluctuation dominated dynamics in the context of environmental noise is investigated.
The results are important for understanding the origin of the retention time in non-volatile memory devices.
arXiv Detail & Related papers (2021-03-12T15:22:10Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.