The Why, When, and How to Use Active Learning in Large-Data-Driven 3D
Object Detection for Safe Autonomous Driving: An Empirical Exploration
- URL: http://arxiv.org/abs/2401.16634v1
- Date: Tue, 30 Jan 2024 00:14:13 GMT
- Title: The Why, When, and How to Use Active Learning in Large-Data-Driven 3D
Object Detection for Safe Autonomous Driving: An Empirical Exploration
- Authors: Ross Greer, Bj{\o}rk Antoniussen, Mathias V. Andersen, Andreas
M{\o}gelmose, and Mohan M. Trivedi
- Abstract summary: entropy querying is a promising strategy for selecting data that enhances model learning in resource-constrained environments.
Our findings suggest that entropy querying is a promising strategy for selecting data that enhances model learning in resource-constrained environments.
- Score: 1.2815904071470705
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Active learning strategies for 3D object detection in autonomous driving
datasets may help to address challenges of data imbalance, redundancy, and
high-dimensional data. We demonstrate the effectiveness of entropy querying to
select informative samples, aiming to reduce annotation costs and improve model
performance. We experiment using the BEVFusion model for 3D object detection on
the nuScenes dataset, comparing active learning to random sampling and
demonstrating that entropy querying outperforms in most cases. The method is
particularly effective in reducing the performance gap between majority and
minority classes. Class-specific analysis reveals efficient allocation of
annotated resources for limited data budgets, emphasizing the importance of
selecting diverse and informative data for model training. Our findings suggest
that entropy querying is a promising strategy for selecting data that enhances
model learning in resource-constrained environments.
Related papers
- TSceneJAL: Joint Active Learning of Traffic Scenes for 3D Object Detection [26.059907173437114]
TSceneJAL framework can efficiently sample the balanced, diverse, and complex traffic scenes from both labeled and unlabeled data.
Our approach outperforms existing state-of-the-art methods on 3D object detection tasks with up to 12% improvements.
arXiv Detail & Related papers (2024-12-25T11:07:04Z) - Oriented Tiny Object Detection: A Dataset, Benchmark, and Dynamic Unbiased Learning [51.170479006249195]
We introduce a new dataset, benchmark, and a dynamic coarse-to-fine learning scheme in this study.
Our proposed dataset, AI-TOD-R, features the smallest object sizes among all oriented object detection datasets.
We present a benchmark spanning a broad range of detection paradigms, including both fully-supervised and label-efficient approaches.
arXiv Detail & Related papers (2024-12-16T09:14:32Z) - Study of Dropout in PointPillars with 3D Object Detection [0.0]
3D object detection is critical for autonomous driving, leveraging deep learning techniques to interpret LiDAR data.
This study provides an analysis of enhancing the performance of PointPillars model under various dropout rates.
arXiv Detail & Related papers (2024-09-01T09:30:54Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
We propose LESS, an efficient algorithm to estimate data influences and perform Low-rank gradiEnt Similarity Search for instruction data selection.
We show that training on a LESS-selected 5% of the data can often outperform training on the full dataset across diverse downstream tasks.
Our method goes beyond surface form cues to identify data that the necessary reasoning skills for the intended downstream application.
arXiv Detail & Related papers (2024-02-06T19:18:04Z) - Temporal Output Discrepancy for Loss Estimation-based Active Learning [65.93767110342502]
We present a novel deep active learning approach that queries the oracle for data annotation when the unlabeled sample is believed to incorporate high loss.
Our approach achieves superior performances than the state-of-the-art active learning methods on image classification and semantic segmentation tasks.
arXiv Detail & Related papers (2022-12-20T19:29:37Z) - Towards Robust Dataset Learning [90.2590325441068]
We propose a principled, tri-level optimization to formulate the robust dataset learning problem.
Under an abstraction model that characterizes robust vs. non-robust features, the proposed method provably learns a robust dataset.
arXiv Detail & Related papers (2022-11-19T17:06:10Z) - A Survey of Learning on Small Data: Generalization, Optimization, and
Challenge [101.27154181792567]
Learning on small data that approximates the generalization ability of big data is one of the ultimate purposes of AI.
This survey follows the active sampling theory under a PAC framework to analyze the generalization error and label complexity of learning on small data.
Multiple data applications that may benefit from efficient small data representation are surveyed.
arXiv Detail & Related papers (2022-07-29T02:34:19Z) - Exploring Diversity-based Active Learning for 3D Object Detection in Autonomous Driving [45.405303803618]
We investigate diversity-based active learning (AL) as a potential solution to alleviate the annotation burden.
We propose a novel acquisition function that enforces spatial and temporal diversity in the selected samples.
We demonstrate the effectiveness of the proposed method on the nuScenes dataset and show that it outperforms existing AL strategies significantly.
arXiv Detail & Related papers (2022-05-16T14:21:30Z) - Open-Set Semi-Supervised Learning for 3D Point Cloud Understanding [62.17020485045456]
It is commonly assumed in semi-supervised learning (SSL) that the unlabeled data are drawn from the same distribution as that of the labeled ones.
We propose to selectively utilize unlabeled data through sample weighting, so that only conducive unlabeled data would be prioritized.
arXiv Detail & Related papers (2022-05-02T16:09:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.