論文の概要: Improving Global Weather and Ocean Wave Forecast with Large Artificial Intelligence Models
- arxiv url: http://arxiv.org/abs/2401.16669v2
- Date: Fri, 19 Apr 2024 02:01:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-22 19:37:46.277297
- Title: Improving Global Weather and Ocean Wave Forecast with Large Artificial Intelligence Models
- Title(参考訳): 大規模人工知能モデルによる地球気象・海洋波予測の改善
- Authors: Fenghua Ling, Lin Ouyang, Boufeniza Redouane Larbi, Jing-Jia Luo, Tao Han, Xiaohui Zhong, Lei Bai,
- Abstract要約: 天気予報に革命をもたらす人工知能の可能性について論じる。
我々は,大規模人工知能の大気環境予測モデルの開発における課題について検討する。
我々は、大気と海洋の天気予報の最適な未来は、人工知能と従来の数値モデルとのシームレスな統合を実現することであると考えている。
- 参考スコア(独自算出の注目度): 11.042495779829112
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advancement of artificial intelligence technologies, particularly in recent years, has led to the emergence of several large parameter artificial intelligence weather forecast models. These models represent a significant breakthrough, overcoming the limitations of traditional numerical weather prediction models and indicating the emergence of profound potential tools for atmosphere-ocean forecasts. This study explores the evolution of these advanced artificial intelligence forecast models, and based on the identified commonalities, proposes the "Three Large Rules" to measure their development. We discuss the potential of artificial intelligence in revolutionizing numerical weather prediction, and briefly outlining the underlying reasons for its great potential. While acknowledging the high accuracy, computational efficiency, and ease of deployment of large artificial intelligence forecast models, we also emphasize the irreplaceable values of traditional numerical forecasts and explore the challenges in the future development of large-scale artificial intelligence atmosphere-ocean forecast models. We believe that the optimal future of atmosphere-ocean weather forecast lies in achieving a seamless integration of artificial intelligence and traditional numerical models. Such a synthesis is anticipated to offer a more advanced and reliable approach for improved atmosphere-ocean forecasts. Additionally, we illustrate how forecasters can adapt and leverage the advanced artificial intelligence model through an example by building a large artificial intelligence model for global ocean wave forecast.
- Abstract(参考訳): 人工知能技術の急速な進歩、特に近年では、人工知能の天気予報モデルがいくつか出現している。
これらのモデルは、従来の数値天気予報モデルの限界を克服し、大気-海洋予報のための深刻な潜在的なツールの出現を示す重要なブレークスルーである。
本研究は,これらの高度な人工知能予測モデルの進化を考察し,その共通点に基づいて,その発達を計測する「三大ルール」を提案する。
天気予報に革命をもたらす人工知能の可能性について論じ、その大きな可能性の根底にある理由を概説する。
大規模人工知能予測モデルの精度、計算効率、展開の容易さを認めつつも、従来の数値予測の代替不可能な値を強調し、大規模人工知能-海洋予測モデルの開発における課題を探求する。
我々は、大気と海洋の天気予報の最適な未来は、人工知能と従来の数値モデルとのシームレスな統合を実現することであると考えている。
このような合成はより高度で信頼性の高いアプローチで大気-海洋予測を改善することが期待されている。
さらに,大洋波予測のための大規模人工知能モデルを構築することで,先進的な人工知能モデルに適応し,活用する方法について述べる。
関連論文リスト
- FengWu-W2S: A deep learning model for seamless weather-to-subseasonal forecast of global atmosphere [53.22497376154084]
本研究では,FengWuグローバル気象予報モデルに基づくFengWu-Weather to Subseasonal (FengWu-W2S)を提案する。
我々は,FengWu-W2Sが大気環境を3~6週間先まで確実に予測し,マデン・ジュリア振動 (MJO) や北大西洋振動 (NAO) などの地球表面温度, 降水量, 地磁気高度, 季節内信号の予測能力を向上させることを実証した。
日時から季節時の予測誤差成長に関するアブレーション実験
論文 参考訳(メタデータ) (2024-11-15T13:44:37Z) - Forecasting the Future with Future Technologies: Advancements in Large Meteorological Models [3.332582598089642]
気象予報の分野は、大きなモデルの統合によって大きな変化を遂げた。
FourCastNet、Pangu-Weather、GraphCast、ClimaX、FengWuといったモデルは、正確で高精度な予測を提供することで、顕著な貢献をしている。
論文 参考訳(メタデータ) (2024-04-10T00:52:54Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
気象予報に拡散モデル(DM)を適用した新しい手法を提案する。
提案手法は,同一のモデリングフレームワークを用いて,直接予測と反復予測の両方を実現できる。
我々のモデルの柔軟性と制御性は、一般の気象コミュニティにとってより信頼性の高いDLシステムに力を与えます。
論文 参考訳(メタデータ) (2024-02-06T21:28:42Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
この研究は、データ駆動型世界天気予報モデルであるFengWu-GHRを、0.09$circ$水平解像度で実行した。
低解像度モデルから事前知識を継承することにより、MLベースの高解像度予測を操作するための扉を開く新しいアプローチを導入する。
2022年の天気予報は、FengWu-GHRがIFS-HRESよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-28T13:23:25Z) - Towards an end-to-end artificial intelligence driven global weather forecasting system [57.5191940978886]
我々は,地球規模の気象変動に対するAIに基づくデータ同化モデル,すなわちAdasを提案する。
我々は,アダスが地球観測を同化して高品質な分析を行い,長期にわたって安定して運用できることを実証した。
この手法を現実のシナリオに適用するのは,私たちが初めてです。
論文 参考訳(メタデータ) (2023-12-18T09:05:28Z) - FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation [67.20588721130623]
我々は,AIを用いた循環型天気予報システムFengWu-4DVarを開発した。
FengWu-4DVarは観測データをデータ駆動の天気予報モデルに組み込むことができる。
シミュレーションされた観測データセットの実験は、FengWu-4DVarが合理的な解析場を生成することができることを示した。
論文 参考訳(メタデータ) (2023-12-16T02:07:56Z) - AI Foundation Models for Weather and Climate: Applications, Design, and
Implementation [3.3929630603919394]
機械学習と深層学習は、大気のカオス的な振る舞いを理解し、天気予報を促進するために広く研究されてきた。
変換器、物理インフォームド機械学習、グラフニューラルネットワークを用いた最近のアプローチは、比較的狭いスケールと特定のタスクで最先端のパフォーマンスを実証している。
論文 参考訳(メタデータ) (2023-09-19T17:50:27Z) - SEEDS: Emulation of Weather Forecast Ensembles with Diffusion Models [13.331224394143117]
不確かさの定量化は意思決定に不可欠である。
天気予報の不確実性を表す主要なアプローチは、予測の集合を生成することです。
本稿では,これらの予測を歴史的データから学習した深部生成拡散モデルを用いてエミュレートし,計算コストを補正することを提案する。
論文 参考訳(メタデータ) (2023-06-24T22:00:06Z) - Forecasting Future World Events with Neural Networks [68.43460909545063]
Autocastは数千の予測質問と付随するニュースコーパスを含むデータセットである。
ニュースコーパスは日付によって整理され、人間が過去の予測を行った条件を正確にシミュレートすることができる。
予測タスクで言語モデルをテストし、パフォーマンスが人間専門家のベースラインよりはるかに低いことを確認します。
論文 参考訳(メタデータ) (2022-06-30T17:59:14Z) - Skillful Twelve Hour Precipitation Forecasts using Large Context Neural
Networks [8.086653045816151]
現在の運用予測モデルは物理に基づいており、大気をシミュレートするためにスーパーコンピュータを使用している。
ニューラルネットワークに基づく新しい気象モデルのクラスは、天気予報のパラダイムシフトを表している。
最大12時間前に降水予測が可能なニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-11-14T22:53:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。