論文の概要: LF Tracy: A Unified Single-Pipeline Approach for Salient Object Detection in Light Field Cameras
- arxiv url: http://arxiv.org/abs/2401.16712v2
- Date: Mon, 26 Aug 2024 12:52:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 00:26:06.597511
- Title: LF Tracy: A Unified Single-Pipeline Approach for Salient Object Detection in Light Field Cameras
- Title(参考訳): LFトレーシー(LFトレーシー):光界カメラのサリアント物体検出のための統一単管アプローチ
- Authors: Fei Teng, Jiaming Zhang, Jiawei Liu, Kunyu Peng, Xina Cheng, Zhiyong Li, Kailun Yang,
- Abstract要約: LF Salient Object Detection (SOD) タスクで見落とされた2つの問題を特定した。
従来のアプローチでは、主に光界画像内の空間的・深度的特徴を発見するために、カスタマイズされた2ストリーム設計を採用していた。
ネットワークは、ネットワーク内のデータ接続の欠如により、異なる画像間で暗黙の角情報を学ぶのに苦労している。
これらの問題に対処するための効率的なパラダイム(LF Tracy)を提案する。
- 参考スコア(独自算出の注目度): 21.224449211575646
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Leveraging rich information is crucial for dense prediction tasks. Light field (LF) cameras are instrumental in this regard, as they allow data to be sampled from various perspectives. This capability provides valuable spatial, depth, and angular information, enhancing scene-parsing tasks. However, we have identified two overlooked issues for the LF salient object detection (SOD) task. (1): Previous approaches predominantly employ a customized two-stream design to discover the spatial and depth features within light field images. The network struggles to learn the implicit angular information between different images due to a lack of intra-network data connectivity. (2): Little research has been directed towards the data augmentation strategy for LF SOD. Research on inter-network data connectivity is scant. In this study, we propose an efficient paradigm (LF Tracy) to address those issues. This comprises a single-pipeline encoder paired with a highly efficient information aggregation (IA) module (around 8M parameters) to establish an intra-network connection. Then, a simple yet effective data augmentation strategy called MixLD is designed to bridge the inter-network connections. Owing to this innovative paradigm, our model surpasses the existing state-of-the-art method through extensive experiments. Especially, LF Tracy demonstrates a 23% improvement over previous results on the latest large-scale PKU dataset. The source code is publicly available at: https://github.com/FeiBryantkit/LF-Tracy.
- Abstract(参考訳): リッチな情報を活用することは、密集した予測タスクに不可欠である。
光フィールド(LF)カメラは、様々な視点からデータをサンプリングできるため、この点において有効である。
この能力は、空間情報、深度情報、角情報を提供し、シーンパーシングのタスクを強化する。
しかし, LF Salient Object Detection (SOD) の課題は2つ見過ごされている。
1) 従来のアプローチでは,光界画像内の空間的・深度的特徴を発見するために,カスタマイズされた2ストリーム設計が主流であった。
ネットワークは、ネットワーク内のデータ接続の欠如により、異なる画像間で暗黙の角情報を学ぶのに苦労している。
2)LF SODのデータ拡張戦略についてはほとんど研究されていない。
ネットワーク間データ接続に関する研究は困難である。
本研究では,これらの問題に対処するための効率的なパラダイム(LF Tracy)を提案する。
これは、高効率な情報集約(IA)モジュール(約8Mパラメータ)と組み合わせて、ネットワーク内接続を確立するシングルパイプエンコーダを含む。
次に、MixLDと呼ばれるシンプルだが効果的なデータ拡張戦略が、ネットワーク間の接続をブリッジするように設計されている。
この革新的なパラダイムにより、我々のモデルは広範な実験を通じて既存の最先端の手法を超越している。
特にLF Tracyは、最新の大規模PKUデータセットにおいて、以前の結果よりも23%改善されている。
ソースコードは、https://github.com/FeiBryantkit/LF-Tracyで公開されている。
関連論文リスト
- PGNeXt: High-Resolution Salient Object Detection via Pyramid Grafting Network [24.54269823691119]
本稿では、データセットとネットワークフレームワークの両方の観点から、より難解な高分解能サルエントオブジェクト検出(HRSOD)について述べる。
HRSODデータセットの欠如を補うため、UHRSDと呼ばれる大規模高解像度の高分解能物体検出データセットを慎重に収集した。
すべての画像はピクセルレベルで微妙にアノテートされ、以前の低解像度のSODデータセットをはるかに上回っている。
論文 参考訳(メタデータ) (2024-08-02T09:31:21Z) - Multi-Correlation Siamese Transformer Network with Dense Connection for
3D Single Object Tracking [14.47355191520578]
ポイントクラウドベースの3Dオブジェクトトラッキングは、自動運転において重要なタスクである。
スパースLIDARポイントクラウドデータでテンプレートと検索ブランチの相関を効果的に学習することは依然として困難である。
本稿では,複数のステージを持つマルチ相関シームス変圧器ネットワークを提案し,各ステージの最後に特徴相関を行う。
論文 参考訳(メタデータ) (2023-12-18T09:33:49Z) - Contrastive Transformer Learning with Proximity Data Generation for
Text-Based Person Search [60.626459715780605]
記述的なテキストクエリーを与えられたテキストベースの人物検索は、画像ギャラリーからベストマッチした人物を検索することを目的としている。
このようなクロスモーダル検索タスクは、重要なモダリティギャップ、きめ細かい相違、注釈付きデータの不十分さのため、かなり難しい。
本稿では,テキストに基づく人物検索のための2つのトランスフォーマーモデルを提案する。
論文 参考訳(メタデータ) (2023-11-15T16:26:49Z) - OAFuser: Towards Omni-Aperture Fusion for Light Field Semantic Segmentation [48.828453331724965]
我々は,Omni-Aperture Fusion Model (OAFuser) を提案する。
提案したOAFuserは,すべての評価指標から4つのUrbanLFデータセット上での最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-07-28T14:43:27Z) - SufrinNet: Toward Sufficient Cross-View Interaction for Stereo Image
Enhancement in The Dark [119.01585302856103]
低照度ステレオ画像強調(LLSIE)は、暗黒環境で撮影された視覚的に不快なステレオ画像の品質を高めるための比較的新しいタスクである。
1)クロスビューの相互作用が不十分なこと,2)ビュー内学習に長距離依存が欠如していること,である。
SufrinNet(SufrinNet)を用いた新しいLLSIEモデルを提案する。
論文 参考訳(メタデータ) (2022-11-02T04:01:30Z) - MBDF-Net: Multi-Branch Deep Fusion Network for 3D Object Detection [17.295359521427073]
3次元物体検出のためのMulti-Branch Deep Fusion Network (MBDF-Net)を提案する。
最初の段階では、マルチブランチ機能抽出ネットワークは、Adaptive Attention Fusionモジュールを使用して、単一モーダルなセマンティックな特徴からクロスモーダルな融合機能を生成する。
第2段階では、関心領域(RoI)をプールした核融合モジュールを用いて局所的な特徴を改良する。
論文 参考訳(メタデータ) (2021-08-29T15:40:15Z) - EPMF: Efficient Perception-aware Multi-sensor Fusion for 3D Semantic Segmentation [62.210091681352914]
自律運転やロボティクスなど,多くのアプリケーションを対象とした3次元セマンティックセマンティックセグメンテーションのためのマルチセンサフュージョンについて検討する。
本研究では,知覚認識型マルチセンサフュージョン(PMF)と呼ばれる協調融合方式について検討する。
本稿では,2つのモードから特徴を分離して抽出する2ストリームネットワークを提案する。
論文 参考訳(メタデータ) (2021-06-21T10:47:26Z) - Dense Multiscale Feature Fusion Pyramid Networks for Object Detection in
UAV-Captured Images [0.09065034043031667]
本研究では,よりリッチな特徴を可能な限り得ることを目的とした,高密度多スケール特徴融合ピラミッドネットワーク(dmffpn)と呼ばれる新しい手法を提案する。
具体的には、密度の高い接続は、異なる畳み込み層からの表現を完全に活用するように設計されている。
VisDrone-DETと呼ばれるドローンベースのデータセットの実験は、我々の方法の競争力を示唆している。
論文 参考訳(メタデータ) (2020-12-19T10:05:31Z) - Adaptive Context-Aware Multi-Modal Network for Depth Completion [107.15344488719322]
我々は,観測された空間コンテキストを捉えるために,グラフ伝搬を採用することを提案する。
次に、注意機構を伝搬に適用し、ネットワークが文脈情報を適応的にモデル化することを奨励する。
最後に、抽出したマルチモーダル特徴を効果的に活用するための対称ゲート融合戦略を導入する。
本稿では,Adaptive Context-Aware Multi-Modal Network (ACMNet) を2つのベンチマークで評価した。
論文 参考訳(メタデータ) (2020-08-25T06:00:06Z) - Cross-layer Feature Pyramid Network for Salient Object Detection [102.20031050972429]
本稿では,有能な物体検出における進行的融合を改善するために,新しいクロス層特徴ピラミッドネットワークを提案する。
レイヤごとの分散機能は、他のすべてのレイヤからセマンティクスと健全な詳細の両方を同時に所有し、重要な情報の損失を減らします。
論文 参考訳(メタデータ) (2020-02-25T14:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。