論文の概要: A Literature Review on Fetus Brain Motion Correction in MRI
- arxiv url: http://arxiv.org/abs/2401.16782v1
- Date: Tue, 30 Jan 2024 06:43:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-31 15:56:05.121149
- Title: A Literature Review on Fetus Brain Motion Correction in MRI
- Title(参考訳): MRIにおける胎児脳運動補正の文献的考察
- Authors: Haoran Zhang, Yun Wang
- Abstract要約: その中には、Slice to Volume Registration(SVR)のような従来の3DMRI補正方法、畳み込みニューラルネットワーク(CNN)やLong Short-Term Memory(LSTM) Networks、Transformers、Generative Adversarial Networks(GAN)といったディープラーニングベースのテクニックが含まれている。
この文献レビューから得られた知見は、MRI研究における胎児運動の技術的な複雑さと実践的意味の両方を深く理解し、潜在的な解決策とこの分野の今後の改善について合理的な視点を提供する。
- 参考スコア(独自算出の注目度): 26.55520964963958
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper provides a comprehensive review of the latest advancements in
fetal motion correction in MRI. We delve into various contemporary
methodologies and technological advancements aimed at overcoming these
challenges. It includes traditional 3D fetal MRI correction methods like Slice
to Volume Registration (SVR), deep learning-based techniques such as
Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) Networks,
Transformers, Generative Adversarial Networks (GANs) and most recent
advancements of Diffusion Models. The insights derived from this literature
review reflect a thorough understanding of both the technical intricacies and
practical implications of fetal motion in MRI studies, offering a reasoned
perspective on potential solutions and future improvements in this field.
- Abstract(参考訳): 本稿では,MRIにおける胎児運動補正の最近の進歩を概観する。
我々はこれらの課題を克服するために、様々な現代的な方法論と技術進歩を探求する。
その中には、Slice to Volume Registration(SVR)のような従来の3DMRI補正方法、畳み込みニューラルネットワーク(CNN)やLong Short-Term Memory(LSTM) Networks、Transformers、Generative Adversarial Networks(GAN)といったディープラーニングベースのテクニック、最新の拡散モデルなどが含まれる。
この文献レビューから得られた知見は、MRI研究における胎児運動の技術的な複雑さと実践的意味の両方を深く理解し、潜在的な解決策とこの分野の今後の改善について合理的な視点を提供する。
関連論文リスト
- Enhance the Image: Super Resolution using Artificial Intelligence in MRI [10.00462384555522]
本章では,MRIの空間分解能向上のためのディープラーニング技術の概要を紹介する。
深層学習に基づくMRI超解像の実現可能性と信頼性に関する課題と今後の展望について論じる。
論文 参考訳(メタデータ) (2024-06-19T15:19:41Z) - Deep Learning for Accelerated and Robust MRI Reconstruction: a Review [28.663292249133864]
磁気共鳴イメージング(MRI)の重要技術として深層学習(DL)が登場した
本稿では,MRI再建のためのDLの最近の進歩について概説する。
論文 参考訳(メタデータ) (2024-04-24T07:02:03Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
脳の復号化は、獲得した脳信号から刺激を再構築することを目的としている。
現在、脳の復号化はモデルごとのオブジェクトごとのパラダイムに限られている。
我々は,1つのモデルのみを用いることで,オブジェクト間脳デコーディングを実現するMindBridgeを提案する。
論文 参考訳(メタデータ) (2024-04-11T15:46:42Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
磁気共鳴イメージング(MRI)におけるオフ共鳴アーティファクトは、画像ボリューム内のスピンの実際の共鳴周波数が空間情報を符号化するのに使用される期待周波数と異なる場合に発生する視覚歪みである。
本稿では,2次元MRI再構成問題を3次元に引き上げ,このオフ共鳴をモデル化するための「スペクトル」次元を導入することで,これらのアーチファクトを解決することを提案する。
論文 参考訳(メタデータ) (2023-11-22T05:44:51Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
本稿では,fMRI事前学習のための革新的オートエンコーダであるfMRI-PTEを提案する。
我々のアプローチでは、fMRI信号を統合された2次元表現に変換し、次元の整合性を確保し、脳の活動パターンを保存する。
コントリビューションには、fMRI-PTEの導入、革新的なデータ変換、効率的なトレーニング、新しい学習戦略、そして我々のアプローチの普遍的な適用性が含まれる。
論文 参考訳(メタデータ) (2023-11-01T07:24:22Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
本稿では,正常脳解剖のパッチベース推定法として拡散モデルの生成タスクを再構築する手法を提案する。
腫瘍と多発性硬化症について検討し,既存のベースラインと比較して25.1%の改善がみられた。
論文 参考訳(メタデータ) (2023-03-07T09:40:22Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
本稿では,畳み込みニューラルネットワークや生成的敵ネットワークに基づく手法を含む,高速MRIのためのディープラーニングに基づくデータ駆動手法を紹介する。
MRI加速のための物理とデータ駆動モデルの結合に関する研究について詳述する。
最後に, 臨床応用について紹介し, マルチセンター・マルチスキャナー研究における高速MRI技術におけるデータ調和の重要性と説明可能なモデルについて述べる。
論文 参考訳(メタデータ) (2022-04-01T22:48:08Z) - Recurrent Variational Network: A Deep Learning Inverse Problem Solver
applied to the task of Accelerated MRI Reconstruction [3.058685580689605]
本稿では,MRIの高速化作業に応用した,ディープラーニングに基づく逆問題解法を提案する。
RecurrentVarNetは複数のブロックから構成されており、それぞれが逆問題を解決するための勾配降下アルゴリズムの1つのアンロール反復に責任を負っている。
提案手法は,公共のマルチチャネル脳データセットから得られた5倍および10倍の加速データに対して,定性的かつ定量的な再構築結果の新たな状態を実現する。
論文 参考訳(メタデータ) (2021-11-18T11:44:04Z) - DFENet: A Novel Dimension Fusion Edge Guided Network for Brain MRI
Segmentation [0.0]
本稿では,2次元CNNと3次元CNNの特徴を融合させることにより,これらの要件を満たす新しいDFENetを提案する。
提案手法は, 既存の方法よりも頑健で正確であり, バイオメディカルな応用に頼ることができる。
論文 参考訳(メタデータ) (2021-05-17T15:43:59Z) - Domain Shift in Computer Vision models for MRI data analysis: An
Overview [64.69150970967524]
機械学習とコンピュータビジョン手法は、医用画像解析において優れた性能を示している。
しかし、現在臨床応用はごくわずかである。
異なるソースや取得ドメインのデータへのモデルの不適切な転送性は、その理由の1つです。
論文 参考訳(メタデータ) (2020-10-14T16:34:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。