論文の概要: Deep Learning for Accelerated and Robust MRI Reconstruction: a Review
- arxiv url: http://arxiv.org/abs/2404.15692v1
- Date: Wed, 24 Apr 2024 07:02:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 19:59:40.931065
- Title: Deep Learning for Accelerated and Robust MRI Reconstruction: a Review
- Title(参考訳): MRIの高速化とロバスト化のための深層学習
- Authors: Reinhard Heckel, Mathews Jacob, Akshay Chaudhari, Or Perlman, Efrat Shimron,
- Abstract要約: 磁気共鳴イメージング(MRI)の重要技術として深層学習(DL)が登場した
本稿では,MRI再建のためのDLの最近の進歩について概説する。
- 参考スコア(独自算出の注目度): 28.663292249133864
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning (DL) has recently emerged as a pivotal technology for enhancing magnetic resonance imaging (MRI), a critical tool in diagnostic radiology. This review paper provides a comprehensive overview of recent advances in DL for MRI reconstruction. It focuses on DL approaches and architectures designed to improve image quality, accelerate scans, and address data-related challenges. These include end-to-end neural networks, pre-trained networks, generative models, and self-supervised methods. The paper also discusses the role of DL in optimizing acquisition protocols, enhancing robustness against distribution shifts, and tackling subtle bias. Drawing on the extensive literature and practical insights, it outlines current successes, limitations, and future directions for leveraging DL in MRI reconstruction, while emphasizing the potential of DL to significantly impact clinical imaging practices.
- Abstract(参考訳): 深層学習(DL)は、放射線診断において重要なツールであるMRI(MRI)の強化のための重要な技術として最近登場した。
本稿では,MRI再建のためのDLの最近の進歩について概説する。
画質を改善し、スキャンを加速し、データ関連の課題に対処するために設計されたDLアプローチとアーキテクチャに焦点を当てている。
その中には、エンドツーエンドのニューラルネットワーク、事前訓練されたネットワーク、生成モデル、自己管理手法などが含まれる。
また,DLが獲得プロトコルの最適化,分散シフトに対する堅牢性の向上,微妙なバイアスに対処する上で果たす役割についても論じる。
広範にわたる文献と実践的洞察に基づいて、MRI再建におけるDLの活用における現在の成功、限界、今後の方向性を概説し、臨床画像の実践に大きな影響を与えるDLの可能性を強調した。
関連論文リスト
- Training Physics-Driven Deep Learning Reconstruction without Raw Data Access for Equitable Fast MRI [2.512491726995032]
物理駆動型ディープラーニング(PD-DL)アプローチは、高速磁気共鳴画像(MRI)スキャンの再構築に人気がある。
PD-DLは、既存の高速MRI技術と比較して加速率が高いが、特定のMRIセンター以外での使用は限られている。
それらの展開の障害の1つは、トレーニングセットでよく表現されていない病理や集団への一般化の難しさである。
CUPIDは、生のk空間データアクセスを必要とするよく確立されたPD-DLトレーニング戦略と同じような品質を実現する。
論文 参考訳(メタデータ) (2024-11-20T03:53:41Z) - A Literature Review on Fetus Brain Motion Correction in MRI [26.55520964963958]
その中には、Slice to Volume Registration(SVR)のような従来の3DMRI補正方法、畳み込みニューラルネットワーク(CNN)やLong Short-Term Memory(LSTM) Networks、Transformers、Generative Adversarial Networks(GAN)といったディープラーニングベースのテクニックが含まれている。
この文献レビューから得られた知見は、MRI研究における胎児運動の技術的な複雑さと実践的意味の両方を深く理解し、潜在的な解決策とこの分野の今後の改善について合理的な視点を提供する。
論文 参考訳(メタデータ) (2024-01-30T06:43:40Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
本稿では,fMRI事前学習のための革新的オートエンコーダであるfMRI-PTEを提案する。
我々のアプローチでは、fMRI信号を統合された2次元表現に変換し、次元の整合性を確保し、脳の活動パターンを保存する。
コントリビューションには、fMRI-PTEの導入、革新的なデータ変換、効率的なトレーニング、新しい学習戦略、そして我々のアプローチの普遍的な適用性が含まれる。
論文 参考訳(メタデータ) (2023-11-01T07:24:22Z) - One for Multiple: Physics-informed Synthetic Data Boosts Generalizable
Deep Learning for Fast MRI Reconstruction [20.84830225817378]
Deep Learning (DL)は、高速MRI画像再構成に有効であることが証明されているが、その広範な適用性は制限されている。
本稿では,高速MRIのための物理インフォームド・シンセティック・データ学習フレームワークPISFを提案する。
PISFは、訓練された1つのモデルを通して、マルチシナリオMRI再構成のための一般化されたDLを可能にすることで、画期的な成果を上げている。
論文 参考訳(メタデータ) (2023-07-25T03:11:24Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
MRI観察行列を用いて,反復型MGDUNアルゴリズムを新しいモデル誘導深部展開ネットワークに展開する方法を示す。
本稿では,医療画像SR再構成のためのモデルガイド型解釈可能なDeep Unfolding Network(MGDUN)を提案する。
論文 参考訳(メタデータ) (2022-09-15T03:58:30Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
本稿では,畳み込みニューラルネットワークや生成的敵ネットワークに基づく手法を含む,高速MRIのためのディープラーニングに基づくデータ駆動手法を紹介する。
MRI加速のための物理とデータ駆動モデルの結合に関する研究について詳述する。
最後に, 臨床応用について紹介し, マルチセンター・マルチスキャナー研究における高速MRI技術におけるデータ調和の重要性と説明可能なモデルについて述べる。
論文 参考訳(メタデータ) (2022-04-01T22:48:08Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
本稿では,畳み込み長短期記憶(Conv-LSTM)に基づくリカレントニューラルネットワーク(Recurrent Neural Network, RNN)を提案する。
提案アルゴリズムは,DBSのリアルタイムi-MRIを実現する可能性があり,汎用的なMR誘導介入に使用できる。
論文 参考訳(メタデータ) (2022-03-28T14:03:45Z) - Recurrent Variational Network: A Deep Learning Inverse Problem Solver
applied to the task of Accelerated MRI Reconstruction [3.058685580689605]
本稿では,MRIの高速化作業に応用した,ディープラーニングに基づく逆問題解法を提案する。
RecurrentVarNetは複数のブロックから構成されており、それぞれが逆問題を解決するための勾配降下アルゴリズムの1つのアンロール反復に責任を負っている。
提案手法は,公共のマルチチャネル脳データセットから得られた5倍および10倍の加速データに対して,定性的かつ定量的な再構築結果の新たな状態を実現する。
論文 参考訳(メタデータ) (2021-11-18T11:44:04Z) - Improved Simultaneous Multi-Slice Functional MRI Using Self-supervised
Deep Learning [0.487576911714538]
自己監視型DL再構成を複数スライス(SMS)同時画像化に拡張します。
その結果, 自己監視型DLは再構成ノイズを低減し, 残存物を抑制することが示された。
後続のfMRI解析はDL処理によって未定であり、時間信号対雑音比の改善はタスク実行間のコヒーレンス推定を高くする。
論文 参考訳(メタデータ) (2021-05-10T17:36:27Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
本研究では,新しい適応勾配バランス手法を併用したwasserstein生成逆ネットワークを用いて,画質の向上を図る。
MRIでは、他の技術よりも鮮明な画像を生成する高品質の再構築を維持しながら、アーティファクトを最小限に抑えます。
論文 参考訳(メタデータ) (2021-04-05T13:05:22Z) - Multi-institutional Collaborations for Improving Deep Learning-based
Magnetic Resonance Image Reconstruction Using Federated Learning [62.17532253489087]
深層学習法はmr画像再構成において優れた性能をもたらすことが示されている。
これらの方法は、高い取得コストと医療データプライバシー規制のために収集および共有が困難である大量のデータを必要とします。
我々は,異なる施設で利用可能なmrデータを活用し,患者のプライバシーを保ちながら,連合学習(fl)ベースのソリューションを提案する。
論文 参考訳(メタデータ) (2021-03-03T03:04:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。