論文の概要: Online Resource Allocation with Non-Stationary Customers
- arxiv url: http://arxiv.org/abs/2401.16945v2
- Date: Sun, 2 Jun 2024 14:39:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-04 19:22:52.208689
- Title: Online Resource Allocation with Non-Stationary Customers
- Title(参考訳): 非定常顧客によるオンラインリソース割り当て
- Authors: Xiaoyue Zhang, Hanzhang Qin, Mabel C. Chou,
- Abstract要約: 非定常的な顧客到着率と未知のクリックスルー率を持つオンラインリソースアロケーションのための新しいアルゴリズムを提案する。
さまざまな顧客シナリオに対して,アプローチが最適に近い収益を生み出すことを示すため,広範な数値実験を実施している。
- 参考スコア(独自算出の注目度): 1.3245200952093379
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel algorithm for online resource allocation with non-stationary customer arrivals and unknown click-through rates. We assume multiple types of customers arrive in a nonstationary stochastic fashion, with unknown arrival rates in each period, and that customers' click-through rates are unknown and can only be learned online. By leveraging results from the stochastic contextual bandit with knapsack and online matching with adversarial arrivals, we develop an online scheme to allocate the resources to nonstationary customers. We prove that under mild conditions, our scheme achieves a ``best-of-both-world'' result: the scheme has a sublinear regret when the customer arrivals are near-stationary, and enjoys an optimal competitive ratio under general (non-stationary) customer arrival distributions. Finally, we conduct extensive numerical experiments to show our approach generates near-optimal revenues for all different customer scenarios.
- Abstract(参考訳): 非定常的な顧客到着率と未知のクリックスルー率を持つオンラインリソースアロケーションのための新しいアルゴリズムを提案する。
複数種類の顧客が定常確率で到着し、各期間の到着率が不明であり、客のクリックスルー率が不明であり、オンラインでのみ学習できると仮定する。
Knapsackによる確率的文脈的バンディットと、敵の到着とオンラインマッチングの結果を活用することで、非定常顧客に対してリソースを割り当てるオンラインスキームを開発する。
提案手法は, 利用者の到着がほぼ静止している場合に, サブリニアな後悔を伴い, 一般の(静止しない)顧客到着分布の下で最適な競争比を享受する。
最後に、さまざまな顧客シナリオに対して、アプローチが最適に近い収益を生み出すことを示すために、広範な数値実験を行う。
関連論文リスト
- Submodular Maximization Approaches for Equitable Client Selection in Federated Learning [4.167345675621377]
従来の学習フレームワークでは、トレーニングのためのクライアント選択は、通常、各イテレーションでクライアントのサブセットをランダムにサンプリングする。
本稿では,ランダムクライアント選択の限界に対処するために,SUBTRUNCとUNIONFLという2つの新しい手法を提案する。
論文 参考訳(メタデータ) (2024-08-24T22:40:31Z) - A Primal-Dual Online Learning Approach for Dynamic Pricing of Sequentially Displayed Complementary Items under Sale Constraints [54.46126953873298]
顧客に対して順次表示される補完アイテムの動的価格設定の問題に対処する。
各項目の価格を個別に最適化するのは効果がないため、補完項目のコヒーレントな価格ポリシーが不可欠である。
実世界のデータからランダムに生成した合成設定を用いて,我々のアプローチを実証的に評価し,制約違反や後悔の観点からその性能を比較した。
論文 参考訳(メタデータ) (2024-07-08T09:55:31Z) - Emulating Full Client Participation: A Long-Term Client Selection Strategy for Federated Learning [48.94952630292219]
本稿では,クライアントの完全参加によって達成されるパフォーマンスをエミュレートする新しいクライアント選択戦略を提案する。
1ラウンドで、クライアントサブセットとフルクライアントセット間の勾配空間推定誤差を最小化し、クライアントを選択する。
複数ラウンド選択において、類似したデータ分布を持つクライアントが選択される頻度に類似することを保証する、新しい個性制約を導入する。
論文 参考訳(メタデータ) (2024-05-22T12:27:24Z) - Greedy Shapley Client Selection for Communication-Efficient Federated
Learning [32.38170282930876]
フェデレートラーニング(FL)のための標準的なクライアント選択アルゴリズムは、しばしばバイアスがなく、クライアントのランダムサンプリングが一様である。
私たちは、各通信ラウンドで最も貢献するクライアントを特定し、優しく選択する、バイアスのあるクライアント選択戦略であるGreedyFedを開発します。
複数の実世界のデータセット上のさまざまなクライアント選択戦略と比較して、GreedyFedは、タイミング制約の下で高い精度で高速で安定した収束を示す。
論文 参考訳(メタデータ) (2023-12-14T16:44:38Z) - Multi-Criteria Client Selection and Scheduling with Fairness Guarantee
for Federated Learning Service [17.986744632466515]
フェデレートラーニング(FL)は、複数のクライアントが生のトレーニングデータを共有せずに、機械学習モデルを協調的にトレーニングすることを可能にする。
公平性を保証するマルチ基準クライアント選択とスケジューリング方式を提案する。
我々のスキームは、特にデータが非IDである場合、モデル品質を改善することができる。
論文 参考訳(メタデータ) (2023-12-05T16:56:24Z) - FilFL: Client Filtering for Optimized Client Participation in Federated Learning [71.46173076298957]
フェデレートラーニングは、クライアントがローカルデータを交換することなく、協調的にモデルをトレーニングすることを可能にする。
トレーニングプロセスに参加するクライアントは、収束率、学習効率、モデル一般化に大きな影響を与えます。
本稿では,モデル一般化を改善し,クライアント参加とトレーニングを最適化する新しい手法であるクライアントフィルタリングを提案する。
論文 参考訳(メタデータ) (2023-02-13T18:55:31Z) - Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated
Learning via Class-Imbalance Reduction [76.26710990597498]
本研究では,ランダムに選択したクライアントからのグループデータのクラス不均衡が,性能の大幅な低下につながることを示す。
我々のキーとなる観測に基づいて、我々は効率的なクライアントサンプリング機構、すなわちフェデレートクラスバランスサンプリング(Fed-CBS)を設計する。
特に、クラス不均衡の尺度を提案し、その後、同型暗号化を用いてプライバシー保護方式でこの尺度を導出する。
論文 参考訳(メタデータ) (2022-09-30T05:42:56Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
フェデレーション学習は、プライバシと通信の制限を尊重しながら、クライアントの大規模なネットワークに分散されたサンプルからのトレーニングモデルを可能にする。
これら2つのハードルを同時に処理する理論的なスピードアップを保証する新しいアルゴリズム手法を開発した。
提案手法は,すべてのクライアントのデータを用いてグローバルな共通表現を見つけ,各クライアントに対してパーソナライズされたソリューションにつながるパラメータの集合を学習するために,表現学習理論からのアイデアに依存している。
論文 参考訳(メタデータ) (2022-06-05T01:14:46Z) - Non-Stationary Latent Bandits [68.21614490603758]
非定常ユーザに対して高速なパーソナライズのための実践的アプローチを提案する。
鍵となる考え方は、この問題を潜在バンディットとみなすことであり、ユーザ行動のプロトタイプモデルがオフラインで学習され、ユーザの潜伏状態がオンラインで推論される。
我々は,非定常潜伏帯域における後悔最小化のためのトンプソンサンプリングアルゴリズムを提案し,それらを解析し,実世界のデータセット上で評価する。
論文 参考訳(メタデータ) (2020-12-01T10:31:57Z) - Client Selection in Federated Learning: Convergence Analysis and
Power-of-Choice Selection Strategies [29.127689561987964]
フェデレートラーニングにより、多数のリソース制限されたクライアントノードが、データ共有なしで協調的にモデルをトレーニングできる。
局所的損失の高いクライアントに対するクライアント選択の偏りは、より高速なエラー収束を実現することを示す。
通信および計算効率の高いクライアント選択フレームワークであるPower-of-Choiceを提案する。
論文 参考訳(メタデータ) (2020-10-03T01:04:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。