論文の概要: A Primal-Dual Online Learning Approach for Dynamic Pricing of Sequentially Displayed Complementary Items under Sale Constraints
- arxiv url: http://arxiv.org/abs/2407.05793v1
- Date: Mon, 8 Jul 2024 09:55:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 16:10:47.249643
- Title: A Primal-Dual Online Learning Approach for Dynamic Pricing of Sequentially Displayed Complementary Items under Sale Constraints
- Title(参考訳): 販売制約下での逐次表示された補完アイテムの動的価格決定のための初日オンライン学習手法
- Authors: Francesco Emanuele Stradi, Filippo Cipriani, Lorenzo Ciampiconi, Marco Leonardi, Alessandro Rozza, Nicola Gatti,
- Abstract要約: 顧客に対して順次表示される補完アイテムの動的価格設定の問題に対処する。
各項目の価格を個別に最適化するのは効果がないため、補完項目のコヒーレントな価格ポリシーが不可欠である。
実世界のデータからランダムに生成した合成設定を用いて,我々のアプローチを実証的に評価し,制約違反や後悔の観点からその性能を比較した。
- 参考スコア(独自算出の注目度): 54.46126953873298
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address the challenging problem of dynamically pricing complementary items that are sequentially displayed to customers. An illustrative example is the online sale of flight tickets, where customers navigate through multiple web pages. Initially, they view the ticket cost, followed by ancillary expenses such as insurance and additional luggage fees. Coherent pricing policies for complementary items are essential because optimizing the pricing of each item individually is ineffective. Our scenario also involves a sales constraint, which specifies a minimum number of items to sell, and uncertainty regarding customer demand curves. To tackle this problem, we originally formulate it as a Markov Decision Process with constraints. Leveraging online learning tools, we design a primal-dual online optimization algorithm. We empirically evaluate our approach using synthetic settings randomly generated from real-world data, covering various configurations from stationary to non-stationary, and compare its performance in terms of constraints violation and regret against well-known baselines optimizing each state singularly.
- Abstract(参考訳): 顧客に対して順次表示される補完アイテムを動的に価格設定するという課題に対処する。
説明的な例として、顧客が複数のWebページをナビゲートするフライトチケットのオンライン販売がある。
当初は切符のコストを判断し、保険や追加の荷物料金などの補助費用を課した。
各項目の価格を個別に最適化するのは効果がないため、補完項目のコヒーレントな価格ポリシーが不可欠である。
当社のシナリオには、販売対象アイテムの最小数を指定する販売制約や、顧客需要曲線に関する不確実性も含まれる。
この問題に対処するため、当初、制約付きマルコフ決定プロセスとして定式化しました。
オンライン学習ツールを活用することで、原始二重オンライン最適化アルゴリズムを設計する。
本研究では,実世界のデータからランダムに生成された合成設定を用いて,定常状態から非定常状態までの様々な構成を網羅し,各状態を一意に最適化するよく知られたベースラインに対する制約違反や後悔の点において,その性能を比較した。
関連論文リスト
- Procurement Auctions via Approximately Optimal Submodular Optimization [53.93943270902349]
競売業者がプライベートコストで戦略的売り手からサービスを取得しようとする競売について検討する。
我々の目標は、取得したサービスの品質と販売者の総コストとの差を最大化する計算効率の良いオークションを設計することである。
論文 参考訳(メタデータ) (2024-11-20T18:06:55Z) - Structured Dynamic Pricing: Optimal Regret in a Global Shrinkage Model [50.06663781566795]
消費者の嗜好と価格感が時間とともに変化する動的モデルを考える。
我々は,モデルパラメータの順序を事前に把握している透視者と比較して,収益損失が予想される,後悔による動的価格政策の性能を計測する。
提案した政策の最適性を示すだけでなく,政策立案のためには,利用可能な構造情報を組み込むことが不可欠であることを示す。
論文 参考訳(メタデータ) (2023-03-28T00:23:23Z) - Personalized Pricing with Invalid Instrumental Variables:
Identification, Estimation, and Policy Learning [5.372349090093469]
本研究は,インストゥルメンタル変数アプローチを用いて,内在性の下でのオフラインパーソナライズド価格について検討する。
Invalid iNsTrumental変数を用いたパーソナライズされたプライシングのための新しいポリシー学習手法を提案する。
論文 参考訳(メタデータ) (2023-02-24T14:50:47Z) - Online Learning under Budget and ROI Constraints via Weak Adaptivity [57.097119428915796]
制約付きオンライン学習問題に対する既存の原始双対アルゴリズムは、2つの基本的な仮定に依存している。
このような仮定は、標準の原始双対テンプレートを弱適応的後悔最小化器で与えることによって、どのように回避できるのかを示す。
上記の2つの前提が満たされていない場合に保証される、世界の最高の保証を証明します。
論文 参考訳(メタデータ) (2023-02-02T16:30:33Z) - Smoothed Online Convex Optimization Based on Discounted-Normal-Predictor [68.17855675511602]
円滑なオンライン凸最適化(SOCO)のためのオンライン予測戦略について検討する。
提案アルゴリズムは,各区間の切替コストで適応的後悔を最小限に抑えることができることを示す。
論文 参考訳(メタデータ) (2022-05-02T08:48:22Z) - Stochastic Online Fisher Markets: Static Pricing Limits and Adaptive Enhancements [3.2732273647357437]
我々は、民間で知られたユーティリティーと予算パラメーターを持つユーザが順次到着する、オンライン型のフィッシャーマーケットについて研究する。
この設定では,まず静的な価格設定アルゴリズムの限界について検討し,全ユーザに対して均一な価格設定を行う。
我々は,ユーザの予算とユーティリティパラメータの分布を熟知した適応型ポストプライシングアルゴリズムを設計し,ユーザ消費の過去の観測に基づいて価格を調整した。
論文 参考訳(メタデータ) (2022-04-27T05:03:45Z) - COptiDICE: Offline Constrained Reinforcement Learning via Stationary
Distribution Correction Estimation [73.17078343706909]
オフラインの制約付き強化学習(RL)問題。エージェントは、所定のコスト制約を満たしながら期待されるリターンを最大化するポリシーを計算し、事前に収集されたデータセットからのみ学習する。
定常分布空間におけるポリシーを最適化するオフライン制約付きRLアルゴリズムを提案する。
我々のアルゴリズムであるCOptiDICEは、コスト上限を制約しながら、利益に対する最適政策の定常分布補正を直接見積もる。
論文 参考訳(メタデータ) (2022-04-19T15:55:47Z) - Distribution-free Contextual Dynamic Pricing [5.773269033551628]
コンテキスト動的価格設定は、顧客との逐次的なインタラクションに基づいてパーソナライズされた価格を設定することを目的としている。
本稿では,未知のランダムノイズを伴う文脈的動的価格を評価モデルで検討する。
我々の流通自由価格政策は、コンテキスト関数と市場ノイズの両方を同時に学習する。
論文 参考訳(メタデータ) (2021-09-15T14:52:44Z) - Online Regularization towards Always-Valid High-Dimensional Dynamic
Pricing [19.11333865618553]
本稿では,動的価格ポリシーに基づくオンライン統計学習を理論的保証付きで設計するための新しい手法を提案する。
提案手法は,提案する楽観的オンライン定期化最大価格(OORMLP)に3つの大きな利点がある。
理論的には,提案したOORMLPアルゴリズムは高次元モデルの空間構造を利用し,決定の地平線における対数的後悔を保証する。
論文 参考訳(メタデータ) (2020-07-05T23:52:09Z) - Model Distillation for Revenue Optimization: Interpretable Personalized
Pricing [8.07517029746865]
我々は、複雑なブラックボックス機械学習アルゴリズムから知識を抽出する、カスタマイズされた、規範的なツリーベースアルゴリズムを提案する。
同様のバリュエーションで顧客を分割し、解釈可能性を維持しながら収益を最大化するような価格を定めている。
論文 参考訳(メタデータ) (2020-07-03T18:33:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。