Classical certification of quantum gates under the dimension assumption
- URL: http://arxiv.org/abs/2401.17006v3
- Date: Fri, 3 May 2024 17:23:37 GMT
- Title: Classical certification of quantum gates under the dimension assumption
- Authors: Jan Nöller, Nikolai Miklin, Martin Kliesch, Mariami Gachechiladze,
- Abstract summary: We develop an efficient method for certifying single-qubit quantum gates in a black-box scenario.
We prove that the method's sample complexity grows as $mathrmO(varepsilon-1)$.
We show that the proposed method can be used to certify a gate set universal for single-qubit quantum computation.
- Score: 0.1874930567916036
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop an efficient method for certifying single-qubit quantum gates in a black-box scenario, assuming only the dimension of the quantum system is known. The method is based on testing the outcomes of exact quantum computations on a single qubit, with no auxiliary systems required. We prove that the method's sample complexity grows as $\mathrm{O}(\varepsilon^{-1})$ with respect to the average gate infidelity $\varepsilon$ for the certification of a relevant single-qubit gate, which experimentally corresponds to a $\pi/2$-pulse. Furthermore, we show that the proposed method can be used to certify a gate set universal for single-qubit quantum computation. Our approach takes a first step in bridging the gap between strong notions of certification from self-testing and practically highly relevant approaches from quantum system characterization.
Related papers
- Single-Round Proofs of Quantumness from Knowledge Assumptions [41.94295877935867]
A proof of quantumness is an efficiently verifiable interactive test that an efficient quantum computer can pass.
Existing single-round protocols require large quantum circuits, whereas multi-round ones use smaller circuits but require experimentally challenging mid-circuit measurements.
We construct efficient single-round proofs of quantumness based on existing knowledge assumptions.
arXiv Detail & Related papers (2024-05-24T17:33:10Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - Improving the speed of variational quantum algorithms for quantum error
correction [7.608765913950182]
We consider the problem of devising a suitable Quantum Error Correction (QEC) procedures for a generic quantum noise acting on a quantum circuit.
In general, there is no analytic universal procedure to obtain the encoding and correction unitary gates.
We address this problem using a cost function based on the Quantum Wasserstein distance of order 1.
arXiv Detail & Related papers (2023-01-12T19:44:53Z) - On Zero-Knowledge Proofs over the Quantum Internet [0.0]
This paper presents a new method for quantum identity authentication (QIA) protocols.
The logic of classical zero-knowledge proofs (ZKPs) due to Schnorr is applied in quantum circuits and algorithms.
arXiv Detail & Related papers (2022-12-06T14:57:00Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Quantum algorithms for estimating quantum entropies [6.211541620389987]
We propose quantum algorithms to estimate the von Neumann and quantum $alpha$-R'enyi entropies of an fundamental quantum state.
We also show how to efficiently construct the quantum entropy circuits for quantum entropy estimation using single copies of the input state.
arXiv Detail & Related papers (2022-03-04T15:44:24Z) - Quantum simulation of $\phi^4$ theories in qudit systems [53.122045119395594]
We discuss the implementation of quantum algorithms for lattice $Phi4$ theory on circuit quantum electrodynamics (cQED) system.
The main advantage of qudit systems is that its multi-level characteristic allows the field interaction to be implemented only with diagonal single-qudit gates.
arXiv Detail & Related papers (2021-08-30T16:30:33Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Proof-of-principle experimental demonstration of quantum gate
verification [1.9852463786440127]
Recently, a scheme called quantum gate verification (QGV) has been proposed, which can verifies quantum gates with near-optimal efficiency.
We show that for a single-qubit quantum gate, only $sim300$ samples are needed to confirm the fidelity of the quantum gate to be at least $97%$ with a $99%$ confidence level.
The QGV method has the potential to be widely used for the evaluation of quantum devices in various quantum information applications.
arXiv Detail & Related papers (2021-07-28T16:20:27Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUANTIFY is an open-source framework for the quantitative analysis of quantum circuits.
It is based on Google Cirq and is developed with Clifford+T circuits in mind.
For benchmarking purposes QUANTIFY includes quantum memory and quantum arithmetic circuits.
arXiv Detail & Related papers (2020-07-21T15:36:25Z) - Using Quantum Metrological Bounds in Quantum Error Correction: A Simple
Proof of the Approximate Eastin-Knill Theorem [77.34726150561087]
We present a proof of the approximate Eastin-Knill theorem, which connects the quality of a quantum error-correcting code with its ability to achieve a universal set of logical gates.
Our derivation employs powerful bounds on the quantum Fisher information in generic quantum metrological protocols.
arXiv Detail & Related papers (2020-04-24T17:58:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.