Proof-of-principle experimental demonstration of quantum gate
verification
- URL: http://arxiv.org/abs/2107.13466v2
- Date: Fri, 11 Feb 2022 02:01:03 GMT
- Title: Proof-of-principle experimental demonstration of quantum gate
verification
- Authors: Maolin Luo, Xiaoqian Zhang, Xiaoqi Zhou
- Abstract summary: Recently, a scheme called quantum gate verification (QGV) has been proposed, which can verifies quantum gates with near-optimal efficiency.
We show that for a single-qubit quantum gate, only $sim300$ samples are needed to confirm the fidelity of the quantum gate to be at least $97%$ with a $99%$ confidence level.
The QGV method has the potential to be widely used for the evaluation of quantum devices in various quantum information applications.
- Score: 1.9852463786440127
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To employ a quantum device, the performance of the quantum gates in the
device needs to be evaluated first. Since the dimensionality of a quantum gate
grows exponentially with the number of qubits, evaluating the performance of a
quantum gate is a challenging task. Recently, a scheme called quantum gate
verification (QGV) has been proposed, which can verifies quantum gates with
near-optimal efficiency. In this paper, we implement a proof-of-principle
optical experiment to demonstrate this QGV scheme. We show that for a
single-qubit quantum gate, only $\sim300$ samples are needed to confirm the
fidelity of the quantum gate to be at least $97\%$ with a $99\%$ confidence
level using the QGV method, whereas, at least $\sim3000$ samples are needed to
achieve the same result using the standard quantum process tomography method.
The QGV method validated by this paper has the potential to be widely used for
the evaluation of quantum devices in various quantum information applications.
Related papers
- Full Quantum Process Tomography of a Universal Entangling Gate on an
IBM's Quantum Computer [0.0]
We conduct a thorough analysis of the SQSCZ gate, a universal two-qubit entangling gate, using real quantum hardware.
Our analysis unveils commendable fidelities and noise properties of the SQSCZ gate, with process fidelities reaching $97.27098%$ and $88.99383%$, respectively.
arXiv Detail & Related papers (2024-02-10T13:25:01Z) - Classical certification of quantum gates under the dimension assumption [0.1874930567916036]
We develop an efficient method for certifying single-qubit quantum gates in a black-box scenario.
We prove that the method's sample complexity grows as $mathrmO(varepsilon-1)$.
We show that the proposed method can be used to certify a gate set universal for single-qubit quantum computation.
arXiv Detail & Related papers (2024-01-30T13:40:39Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Monte Carlo Graph Search for Quantum Circuit Optimization [26.114550071165628]
This work proposes a quantum architecture search algorithm based on a Monte Carlo graph search and measures of importance sampling.
It is applicable to the optimization of gate order, both for discrete gates, as well as gates containing continuous variables.
arXiv Detail & Related papers (2023-07-14T14:01:25Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - Quantum gradient evaluation through quantum non-demolition measurements [0.0]
We discuss a Quantum Non-Demolition Measurement protocol to estimate the derivatives of a cost function with a quantum computer.
This is a key step for the implementation of variational quantum circuits.
arXiv Detail & Related papers (2023-01-17T19:00:08Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Efficient Experimental Verification of Quantum Gates with Local
Operations [0.0]
We propose a variant of quantum gate verification (QGV) which is robust to practical gate imperfections.
We experimentally realize efficient QGV on a two-qubit controlled-not gate and a three-qubit Toffoli gate.
Our work promises a solution to the dimensionality curse in verifying large quantum devices in the quantum era.
arXiv Detail & Related papers (2021-07-06T02:56:55Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUANTIFY is an open-source framework for the quantitative analysis of quantum circuits.
It is based on Google Cirq and is developed with Clifford+T circuits in mind.
For benchmarking purposes QUANTIFY includes quantum memory and quantum arithmetic circuits.
arXiv Detail & Related papers (2020-07-21T15:36:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.