論文の概要: LADDER: Revisiting the Cosmic Distance Ladder with Deep Learning Approaches and Exploring its Applications
- arxiv url: http://arxiv.org/abs/2401.17029v2
- Date: Thu, 18 Jul 2024 15:31:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-19 21:41:25.885199
- Title: LADDER: Revisiting the Cosmic Distance Ladder with Deep Learning Approaches and Exploring its Applications
- Title(参考訳): LADDER: 深層学習アプローチによる宇宙距離ラダーの再検討と応用
- Authors: Rahul Shah, Soumadeep Saha, Purba Mukherjee, Utpal Garain, Supratik Pal,
- Abstract要約: LADDERはパンテオンIa型超新星の観測データに基づいて訓練されている。
宇宙論的な文脈における我々の手法の応用を実証し、一貫性チェックのためのモデルに依存しないツールとして機能する。
- 参考スコア(独自算出の注目度): 1.4330510916280879
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the prospect of reconstructing the ''cosmic distance ladder'' of the Universe using a novel deep learning framework called LADDER - Learning Algorithm for Deep Distance Estimation and Reconstruction. LADDER is trained on the apparent magnitude data from the Pantheon Type Ia supernovae compilation, incorporating the full covariance information among data points, to produce predictions along with corresponding errors. After employing several validation tests with a number of deep learning models, we pick LADDER as the best performing one. We then demonstrate applications of our method in the cosmological context, including serving as a model-independent tool for consistency checks for other datasets like baryon acoustic oscillations, calibration of high-redshift datasets such as gamma ray bursts, and use as a model-independent mock catalog generator for future probes. Our analysis advocates for careful consideration of machine learning techniques applied to cosmological contexts.
- Abstract(参考訳): LADDER(Learning Algorithm for Deep Distance Estimation and Reconstruction)と呼ばれる新しいディープラーニングフレームワークを用いて、宇宙の「宇宙距離はしご」を再構築する可能性を検討する。
LADDERは、パンテオン型Ia超新星コンパイルの見かけの大きさデータに基づいて訓練され、データポイント間の完全な共分散情報を組み込んで、対応するエラーと共に予測を生成する。
多数のディープラーニングモデルを用いた検証テストを数回実施した後、最高のパフォーマンスとしてLADDERを選択します。
次に,宇宙論的な文脈における本手法の適用例を示し,バリオン音響振動などの他のデータセットの整合性チェックのためのモデル非依存ツール,ガンマ線バーストなどの高赤方偏移データセットの校正,将来のプローブのためのモデル非依存のモックカタログ生成器としての利用等について述べる。
この分析は、宇宙論の文脈に適用された機械学習技術について慎重に検討することを提唱する。
関連論文リスト
- Spherinator and HiPSter: Representation Learning for Unbiased Knowledge Discovery from Simulations [0.0]
我々は、幅広いシミュレーションから有用な科学的洞察を得るための、新しい、偏見のない、機械学習に基づくアプローチについて説明する。
我々の概念は、低次元空間におけるデータのコンパクトな表現を学習するために非線形次元削減を適用することに基づいている。
本稿では、回転不変な超球面変動畳み込み自己エンコーダを用いて、潜時空間の電力分布を利用して、IllustrisTNGシミュレーションから銀河を訓練したプロトタイプを提案する。
論文 参考訳(メタデータ) (2024-06-06T07:34:58Z) - deep-REMAP: Parameterization of Stellar Spectra Using Regularized
Multi-Task Learning [0.0]
確率的推論のための非対称損失をもつ深層正規化アンサンブルに基づくマルチタスク学習(rmdeep-REMAP$)
我々は、PHOENIXライブラリからのリッチな合成スペクトルと、MARVELSサーベイからの観測データを利用して、恒星の大気パラメータを正確に予測する新しいフレームワークを開発する。
論文 参考訳(メタデータ) (2023-11-07T05:41:48Z) - Domain Adaptive Graph Neural Networks for Constraining Cosmological Parameters Across Multiple Data Sets [40.19690479537335]
DA-GNNは,データセット間のタスクにおいて高い精度とロバスト性を実現する。
このことは、DA-GNNがドメインに依存しない宇宙情報を抽出するための有望な方法であることを示している。
論文 参考訳(メタデータ) (2023-11-02T20:40:21Z) - Asteroids co-orbital motion classification based on Machine Learning [0.0]
我々は、JPLホライズンズ系の実際の小惑星の自転を捉え、惑星との平均運動共鳴における4つの異なる動きについて考察する。
変数テータの時系列は、その問題に対してアドホックを定義したデータ解析パイプラインを用いて研究される。
我々は,アルゴリズムが時系列を高い性能で正確に識別し,分類する方法を示す。
論文 参考訳(メタデータ) (2023-09-19T13:19:31Z) - Disentanglement via Latent Quantization [60.37109712033694]
本研究では,組織化された潜在空間からの符号化と復号化に向けた帰納的バイアスを構築する。
本稿では,基本データレコーダ (vanilla autoencoder) と潜時再構成 (InfoGAN) 生成モデルの両方に追加することで,このアプローチの広範な適用性を実証する。
論文 参考訳(メタデータ) (2023-05-28T06:30:29Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
機械学習の中核的な問題は、複雑なデータに対するモデル予測のための表現力のある潜在変数を学習することである。
本稿では,表現性を向上し,部分的解釈を提供し,特定のアプリケーションに限定されないアプローチを開発する。
論文 参考訳(メタデータ) (2022-10-07T17:56:53Z) - Improving Astronomical Time-series Classification via Data Augmentation
with Generative Adversarial Networks [1.2891210250935146]
本稿では,GAN(Generative Adrial Networks)に基づくデータ拡張手法を提案する。
変動星の分類精度は、合成データによるトレーニングや実データによるテストで著しく向上する。
論文 参考訳(メタデータ) (2022-05-13T16:39:54Z) - Model-Based Deep Learning: On the Intersection of Deep Learning and
Optimization [101.32332941117271]
決定アルゴリズムは様々なアプリケーションで使われている。
数理モデルに頼らずにデータから調整された高度パラメトリックアーキテクチャを使用するディープラーニングアプローチが、ますます人気が高まっている。
モデルに基づく最適化とデータ中心のディープラーニングは、しばしば異なる規律とみなされる。
論文 参考訳(メタデータ) (2022-05-05T13:40:08Z) - Contrastive Neighborhood Alignment [81.65103777329874]
本稿では,学習特徴のトポロジを維持するための多様体学習手法であるContrastive Neighborhood Alignment(CNA)を提案する。
対象モデルは、対照的な損失を用いて、ソース表現空間の局所構造を模倣することを目的としている。
CNAは3つのシナリオで説明される: 多様体学習、モデルが元のデータの局所的なトポロジーを次元還元された空間で維持する、モデル蒸留、小さな学生モデルがより大きな教師を模倣するために訓練される、レガシーモデル更新、より強力なモデルに置き換えられる、という3つのシナリオである。
論文 参考訳(メタデータ) (2022-01-06T04:58:31Z) - CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus [62.86856923633923]
我々は,同じ形状の複数のパラメトリックモデルを雑音測定に適合させる頑健な推定器を提案する。
複数のモデル検出のための手作り検索戦略を利用する従来の研究とは対照的に,データから検索戦略を学習する。
探索の自己教師付き学習において,提案したアルゴリズムをマルチホログラフィー推定で評価し,最先端手法よりも優れた精度を示す。
論文 参考訳(メタデータ) (2020-01-08T17:37:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。