論文の概要: Evaluation in Neural Style Transfer: A Review
- arxiv url: http://arxiv.org/abs/2401.17109v1
- Date: Tue, 30 Jan 2024 15:45:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-31 14:33:04.085948
- Title: Evaluation in Neural Style Transfer: A Review
- Title(参考訳): ニューラル・スタイル・トランスファーの評価 : 概観
- Authors: Eleftherios Ioannou and Steve Maddock
- Abstract要約: 既存の評価手法の詳細な分析を行い、現在の評価手法の不整合と限界を特定し、標準化された評価手法の推奨を行う。
我々は、ロバストな評価フレームワークの開発により、より有意義で公平な比較が可能になるだけでなく、この分野における研究成果の理解と解釈を高めることができると考えている。
- 参考スコア(独自算出の注目度): 0.7614628596146599
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The field of Neural Style Transfer (NST) has witnessed remarkable progress in
the past few years, with approaches being able to synthesize artistic and
photorealistic images and videos of exceptional quality. To evaluate such
results, a diverse landscape of evaluation methods and metrics is used,
including authors' opinions based on side-by-side comparisons, human evaluation
studies that quantify the subjective judgements of participants, and a
multitude of quantitative computational metrics which objectively assess the
different aspects of an algorithm's performance. However, there is no consensus
regarding the most suitable and effective evaluation procedure that can
guarantee the reliability of the results. In this review, we provide an
in-depth analysis of existing evaluation techniques, identify the
inconsistencies and limitations of current evaluation methods, and give
recommendations for standardized evaluation practices. We believe that the
development of a robust evaluation framework will not only enable more
meaningful and fairer comparisons among NST methods but will also enhance the
comprehension and interpretation of research findings in the field.
- Abstract(参考訳): ニューラル・スタイル・トランスファー(NST)の分野は、芸術的、フォトリアリスティックなイメージと例外的な品質の動画を合成できるアプローチによって、ここ数年で顕著な進歩を遂げてきた。
これらの結果を評価するために、左右比較に基づく著者の意見、参加者の主観的判断を定量化する人的評価研究、アルゴリズムの性能の異なる側面を客観的に評価する数量的数値メトリクスなど、評価方法や指標の多様な景観が用いられる。
しかし、結果の信頼性を保証できる最も適切かつ効果的な評価手順については合意が得られていない。
本稿では,既存の評価手法を詳細に分析し,現在の評価手法の不整合と限界を特定し,標準化された評価手法の推奨を行う。
頑健な評価フレームワークの開発は,NST手法のより意味のある,より公平な比較を可能にするだけでなく,この分野における研究成果の理解と解釈を促進できると考えている。
関連論文リスト
- Are we making progress in unlearning? Findings from the first NeurIPS unlearning competition [70.60872754129832]
アンラーニングに関する最初のNeurIPSコンペティションは、新しいアルゴリズムの開発を刺激しようとした。
世界中から約1200チームが参加した。
トップソリューションを分析し、アンラーニングのベンチマークに関する議論を掘り下げます。
論文 参考訳(メタデータ) (2024-06-13T12:58:00Z) - Hierarchical Evaluation Framework: Best Practices for Human Evaluation [17.91641890651225]
NLPハマーにおける広く受け入れられている評価基準の欠如は、異なるシステム間での公正な比較と、普遍的な評価基準の確立である。
我々は,NLPシステムの性能をより包括的に表現するための,独自の階層的評価フレームワークを開発した。
今後の課題として,NLPシステムの評価を行う上で,提案するフレームワークの時間節約効果について検討する。
論文 参考訳(メタデータ) (2023-10-03T09:46:02Z) - Towards a Comprehensive Human-Centred Evaluation Framework for
Explainable AI [1.7222662622390634]
本稿では,レコメンデータシステムに使用されるユーザ中心評価フレームワークを適用することを提案する。
我々は、説明的側面、説明的特性を要約し、それらの関係を示し、これらの特性を測定する分類指標を統合する。
論文 参考訳(メタデータ) (2023-07-31T09:20:16Z) - From Static Benchmarks to Adaptive Testing: Psychometrics in AI Evaluation [60.14902811624433]
本稿では,静的評価手法から適応テストへのパラダイムシフトについて論じる。
これには、ベンチマークで各テスト項目の特性と価値を推定し、リアルタイムでアイテムを動的に調整することが含まれる。
我々は、AI評価にサイコメトリックを採用する現在のアプローチ、アドバンテージ、そして根底にある理由を分析します。
論文 参考訳(メタデータ) (2023-06-18T09:54:33Z) - Better Understanding Differences in Attribution Methods via Systematic Evaluations [57.35035463793008]
モデル決定に最も影響を及ぼす画像領域を特定するために、ポストホック属性法が提案されている。
本稿では,これらの手法の忠実度をより確実に評価するための3つの新しい評価手法を提案する。
これらの評価手法を用いて、広範囲のモデルにおいて広く用いられている属性手法の長所と短所について検討する。
論文 参考訳(メタデータ) (2023-03-21T14:24:58Z) - On The Coherence of Quantitative Evaluation of Visual Explanations [0.7212939068975619]
視覚的説明の「良さ」を評価するための評価手法が提案されている。
我々はImageNet-1k検証セットのサブセットについて検討し、多くの一般的な説明手法を評価した。
本研究の結果から, 評価方法のいくつかは, 階調のコヒーレンシーが欠如していることが示唆された。
論文 参考訳(メタデータ) (2023-02-14T13:41:57Z) - Revisiting the Gold Standard: Grounding Summarization Evaluation with
Robust Human Evaluation [136.16507050034755]
要約のための既存の人間の評価研究は、アノテータ間の合意が低かったり、スケールが不十分だったりしている。
細粒度セマンティック・ユニットをベースとした改良された要約サリエンス・プロトコルであるAtomic Content Units (ACUs)を提案する。
ロバスト・サムライゼーション・アセスメント(RoSE)ベンチマークは,28の上位性能システム上で22,000の要約レベルのアノテーションからなる大規模な人的評価データセットである。
論文 参考訳(メタデータ) (2022-12-15T17:26:05Z) - Towards Better Understanding Attribution Methods [77.1487219861185]
モデル決定に最も影響を及ぼす画像領域を特定するために、ポストホック属性法が提案されている。
本稿では,これらの手法の忠実度をより確実に評価するための3つの新しい評価手法を提案する。
また,いくつかの属性法の性能を著しく向上する処理後平滑化ステップを提案する。
論文 参考訳(メタデータ) (2022-05-20T20:50:17Z) - Counterfactually Evaluating Explanations in Recommender Systems [14.938252589829673]
人間の関与なしに計算できるオフライン評価手法を提案する。
従来の手法と比較して,本手法は実際の人間の判断とより相関した評価スコアを得られることを示す。
論文 参考訳(メタデータ) (2022-03-02T18:55:29Z) - Interpretable Off-Policy Evaluation in Reinforcement Learning by
Highlighting Influential Transitions [48.91284724066349]
強化学習におけるオフ政治評価は、医療や教育などの領域における将来の成果を改善するために観察データを使用する機会を提供する。
信頼区間のような従来の尺度は、ノイズ、限られたデータ、不確実性のために不十分である可能性がある。
我々は,人間専門家が政策評価評価評価の妥当性を分析できるように,ハイブリッドAIシステムとして機能する手法を開発した。
論文 参考訳(メタデータ) (2020-02-10T00:26:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。