論文の概要: Can Large Language Models Replace Economic Choice Prediction Labs?
- arxiv url: http://arxiv.org/abs/2401.17435v3
- Date: Thu, 7 Mar 2024 16:47:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-08 17:07:57.952328
- Title: Can Large Language Models Replace Economic Choice Prediction Labs?
- Title(参考訳): 大規模言語モデルは経済選択予測ラボを置き換えることができるか?
- Authors: Eilam Shapira, Omer Madmon, Roi Reichart, Moshe Tennenholtz
- Abstract要約: 言語に基づく説得ゲームにおいて, LLM生成データのみに基づいてトレーニングされたモデルにより, 人間の行動の予測が効果的に可能であることを示す。
特に,LLM生成データのみを訓練したモデルでは,言語に基づく説得ゲームにおいて,人間の行動を効果的に予測できることを示す。
- 参考スコア(独自算出の注目度): 24.05034588588407
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Economic choice prediction is an essential challenging task, often
constrained by the difficulties in acquiring human choice data. Indeed,
experimental economics studies had focused mostly on simple choice settings.
The AI community has recently contributed to that effort in two ways:
considering whether LLMs can substitute for humans in the above-mentioned
simple choice prediction settings, and the study through ML lens of more
elaborated but still rigorous experimental economics settings, employing
incomplete information, repetitive play, and natural language communication,
notably language-based persuasion games. This leaves us with a major
inspiration: can LLMs be used to fully simulate the economic environment and
generate data for efficient human choice prediction, substituting for the
elaborated economic lab studies? We pioneer the study of this subject,
demonstrating its feasibility. In particular, we show that a model trained
solely on LLM-generated data can effectively predict human behavior in a
language-based persuasion game, and can even outperform models trained on
actual human data.
- Abstract(参考訳): 経済選択予測は重要な課題であり、しばしば人間の選択データを取得することの難しさに制約される。
実際、実験経済学の研究は主に単純な選択設定に焦点を当てていた。
aiコミュニティは、最近この取り組みに2つの方法で貢献している: 前述の単純な選択予測設定でllmが人間に代用できるかどうか、そして、不完全な情報、反復遊び、自然言語コミュニケーション、特に言語ベースの説得ゲームを用いた、より精巧だが厳密な実験経済設定のmlレンズを通しての研究。
llmは、経済環境を完全にシミュレートし、効率的な人間の選択予測のためのデータを生成し、精巧な経済研究所の研究に代えることができるか?
我々はこの研究の先駆者であり、その実現可能性を示している。
特に、LLM生成データのみに基づいてトレーニングされたモデルは、言語ベースの説得ゲームにおいて人間の行動を効果的に予測でき、実際の人間のデータに基づいてトレーニングされたモデルよりも優れていることを示す。
関連論文リスト
- Take Caution in Using LLMs as Human Surrogates: Scylla Ex Machina [7.155982875107922]
研究は、大規模言語モデル(LLM)が、経済実験、調査、政治談話において、人間の行動と整合した人間的な推論を示す可能性があることを示唆している。
このことから、LLMは社会科学研究において人間のサロゲートとして使用できると多くの人が提案している。
11~20のマネーリクエストゲームを用いてLCMの推論深度を評価する。
論文 参考訳(メタデータ) (2024-10-25T14:46:07Z) - GLEE: A Unified Framework and Benchmark for Language-based Economic Environments [19.366120861935105]
大規模言語モデル(LLM)は、経済的および戦略的相互作用において大きな可能性を示す。
これらの疑問は、LLMベースのエージェントを実世界のデータ駆動システムに統合することの経済的および社会的意味について重要なものとなっている。
本稿では,2プレイヤー,シーケンシャル,言語ベースのゲームの研究を標準化するためのベンチマークを紹介する。
論文 参考訳(メタデータ) (2024-10-07T17:55:35Z) - EconNLI: Evaluating Large Language Models on Economics Reasoning [22.754757518792395]
LLM(Large Language Models)は、経済分析レポートの作成や、財政的なアドバイスを提供するために広く使われている。
経済分野におけるLLMの知識と推論能力を評価するために,新たなデータセット,経済事象に関する自然言語推論(EconNLI)を提案する。
実験の結果, LLMは経済的な推論では洗練されておらず, 誤りや幻覚を生じさせる可能性が示唆された。
論文 参考訳(メタデータ) (2024-07-01T11:58:24Z) - A Survey on Human Preference Learning for Large Language Models [81.41868485811625]
近年の多目的大言語モデル(LLM)の急激な増加は、より有能な基礎モデルと人間の意図を優先学習によって整合させることに大きく依存している。
本調査では、選好フィードバックのソースとフォーマット、選好信号のモデリングと使用、および、整列 LLM の評価について述べる。
論文 参考訳(メタデータ) (2024-06-17T03:52:51Z) - Language Models Trained to do Arithmetic Predict Human Risky and Intertemporal Choice [4.029252551781513]
本稿では,認知モデルとしての大規模言語モデルの有用性を高める新しい手法を提案する。
生態学的に有効な算術的データセットに基づいて事前訓練されたLLMは、従来の認知モデルよりも人間の行動を予測する。
論文 参考訳(メタデータ) (2024-05-29T17:37:14Z) - Character is Destiny: Can Large Language Models Simulate Persona-Driven Decisions in Role-Playing? [59.0123596591807]
ペルソナ駆動意思決定における大規模言語モデルの能力のベンチマークを行う。
高品質な小説において, LLM が先行する物語の登場人物の判断を予測できるかどうかを考察する。
その結果、現状のLLMは、このタスクに有望な能力を示すが、改善の余地は十分にあることが示された。
論文 参考訳(メタデータ) (2024-04-18T12:40:59Z) - Large language models surpass human experts in predicting neuroscience results [60.26891446026707]
大きな言語モデル(LLM)は、人間の専門家よりも新しい結果を予測する。
BrainBenchは神経科学の結果を予測するためのベンチマークだ。
我々のアプローチは神経科学に特有ではなく、他の知識集約的な取り組みに伝達可能である。
論文 参考訳(メタデータ) (2024-03-04T15:27:59Z) - ChatGPT Based Data Augmentation for Improved Parameter-Efficient Debiasing of LLMs [65.9625653425636]
大型言語モデル(LLM)は有害な社会的バイアスを示す。
そこで本研究では,ChatGPTを用いて合成学習データを生成する手法を提案する。
論文 参考訳(メタデータ) (2024-02-19T01:28:48Z) - Limits of Large Language Models in Debating Humans [0.0]
大きな言語モデル(LLM)は、人間と熟達して対話する能力において顕著な可能性を示してきた。
本論文は,LLMエージェントを現実の人間と組み合わせた事前登録研究により,現在のLLMの限界を検証しようとする試みである。
論文 参考訳(メタデータ) (2024-02-06T03:24:27Z) - Harnessing the Power of LLMs: Evaluating Human-AI Text Co-Creation
through the Lens of News Headline Generation [58.31430028519306]
本研究は, LLMを書き込みに最も有効に活用する方法と, これらのモデルとのインタラクションが, 書き込みプロセスにおけるオーナシップや信頼感にどのように影響するかを考察する。
LLMだけで十分なニュースの見出しを生成することができるが、平均すると、望ましくないモデルのアウトプットを修正するには人間による制御が必要である。
論文 参考訳(メタデータ) (2023-10-16T15:11:01Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。