論文の概要: Can LLMs Replace Economic Choice Prediction Labs? The Case of Language-based Persuasion Games
- arxiv url: http://arxiv.org/abs/2401.17435v4
- Date: Wed, 14 Aug 2024 19:23:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-16 18:53:22.382934
- Title: Can LLMs Replace Economic Choice Prediction Labs? The Case of Language-based Persuasion Games
- Title(参考訳): LLMは経済選択予測研究所を置き換えることができるか? 言語による説得ゲームの場合
- Authors: Eilam Shapira, Omer Madmon, Roi Reichart, Moshe Tennenholtz,
- Abstract要約: 学習したモデルは,言語に基づく説得ゲームにおいて,人間の行動を効果的に予測できることを示す。
実験の結果,LLMデータでトレーニングしたモデルは,実際の人的データでトレーニングしたモデルよりも優れていた。
- 参考スコア(独自算出の注目度): 22.01549425007543
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human choice prediction in economic contexts is crucial for applications in marketing, finance, public policy, and more. This task, however, is often constrained by the difficulties in acquiring human choice data. With most experimental economics studies focusing on simple choice settings, the AI community has explored whether LLMs can substitute for humans in these predictions and examined more complex experimental economics settings. However, a key question remains: can LLMs generate training data for human choice prediction? We explore this in language-based persuasion games, a complex economic setting involving natural language in strategic interactions. Our experiments show that models trained on LLM-generated data can effectively predict human behavior in these games and even outperform models trained on actual human data.
- Abstract(参考訳): 経済状況における人間の選択予測は、マーケティング、金融、公共政策などにおける応用に不可欠である。
しかし、このタスクは人間の選択データを取得することの難しさによって制約されることが多い。
単純な選択設定に焦点をあてた多くの実験経済学研究において、AIコミュニティは、これらの予測においてLLMが人間に代わることができるかどうかを調査し、より複雑な実験経済学設定を検証した。
しかし、重要な疑問が残る: LLMは人間の選択予測のためのトレーニングデータを生成することができるか?
我々は、自然言語を戦略的相互作用に含む複雑な経済環境である言語ベースの説得ゲームでこれを探求する。
実験の結果, LLMデータに基づいてトレーニングしたモデルは, これらのゲームにおける人間の振る舞いを効果的に予測し, 実際の人間のデータでトレーニングしたモデルよりも優れていた。
関連論文リスト
- Using Large Language Models for Expert Prior Elicitation in Predictive Modelling [53.54623137152208]
本研究では,大規模言語モデル (LLM) を用いて予測モデルの事前分布を推定する手法を提案する。
本研究では,LLMがパラメータ分布を真に生成するかどうかを評価するとともに,文脈内学習と事前推論のためのモデル選択戦略を提案する。
その結果,LLMによる事前パラメータ分布は,低データ設定における非形式的先行よりも予測誤差を著しく低減することがわかった。
論文 参考訳(メタデータ) (2024-11-26T10:13:39Z) - NewsInterview: a Dataset and a Playground to Evaluate LLMs' Ground Gap via Informational Interviews [65.35458530702442]
我々はジャーナリストのインタビューに焦点をあて、コミュニケーションの基盤と豊富なデータに富んだドメインに焦点をあてる。
我々はNPRとCNNから4万人の2人によるインフォメーションインタビューのデータセットをキュレートする。
LLMは、人間のインタビュアーよりも、認識を使い、より高いレベルの質問に目を向ける可能性がはるかに低い。
論文 参考訳(メタデータ) (2024-11-21T01:37:38Z) - Take Caution in Using LLMs as Human Surrogates: Scylla Ex Machina [7.155982875107922]
研究は、大規模言語モデル(LLM)が、経済実験、調査、政治談話において、人間の行動と整合した人間的な推論を示す可能性があることを示唆している。
このことから、LLMは社会科学研究において人間の代理やシミュレーションとして使用できると多くの人が提案している。
11~20のマネーリクエストゲームを用いてLCMの推論深度を評価する。
論文 参考訳(メタデータ) (2024-10-25T14:46:07Z) - GLEE: A Unified Framework and Benchmark for Language-based Economic Environments [19.366120861935105]
大規模言語モデル(LLM)は、経済的および戦略的相互作用において大きな可能性を示す。
これらの疑問は、LLMベースのエージェントを実世界のデータ駆動システムに統合することの経済的および社会的意味について重要なものとなっている。
本稿では,2プレイヤー,シーケンシャル,言語ベースのゲームの研究を標準化するためのベンチマークを紹介する。
論文 参考訳(メタデータ) (2024-10-07T17:55:35Z) - EconNLI: Evaluating Large Language Models on Economics Reasoning [22.754757518792395]
LLM(Large Language Models)は、経済分析レポートの作成や、財政的なアドバイスを提供するために広く使われている。
経済分野におけるLLMの知識と推論能力を評価するために,新たなデータセット,経済事象に関する自然言語推論(EconNLI)を提案する。
実験の結果, LLMは経済的な推論では洗練されておらず, 誤りや幻覚を生じさせる可能性が示唆された。
論文 参考訳(メタデータ) (2024-07-01T11:58:24Z) - Language Models Trained to do Arithmetic Predict Human Risky and Intertemporal Choice [4.029252551781513]
本稿では,認知モデルとしての大規模言語モデルの有用性を高める新しい手法を提案する。
生態学的に有効な算術的データセットに基づいて事前訓練されたLLMは、従来の認知モデルよりも人間の行動を予測する。
論文 参考訳(メタデータ) (2024-05-29T17:37:14Z) - Character is Destiny: Can Role-Playing Language Agents Make Persona-Driven Decisions? [59.0123596591807]
我々は、ペルソナ駆動意思決定におけるLarge Language Models(LLM)の能力をベンチマークする。
高品質な小説において, LLM が先行する物語のキャラクターの判断を予測できるかどうかを検討する。
その結果、現状のLLMは、このタスクに有望な能力を示すが、改善の余地は残されている。
論文 参考訳(メタデータ) (2024-04-18T12:40:59Z) - Large language models surpass human experts in predicting neuroscience results [60.26891446026707]
大きな言語モデル(LLM)は、人間の専門家よりも新しい結果を予測する。
BrainBenchは神経科学の結果を予測するためのベンチマークだ。
我々のアプローチは神経科学に特有ではなく、他の知識集約的な取り組みに伝達可能である。
論文 参考訳(メタデータ) (2024-03-04T15:27:59Z) - Limits of Large Language Models in Debating Humans [0.0]
大きな言語モデル(LLM)は、人間と熟達して対話する能力において顕著な可能性を示してきた。
本論文は,LLMエージェントを現実の人間と組み合わせた事前登録研究により,現在のLLMの限界を検証しようとする試みである。
論文 参考訳(メタデータ) (2024-02-06T03:24:27Z) - Harnessing the Power of LLMs: Evaluating Human-AI Text Co-Creation
through the Lens of News Headline Generation [58.31430028519306]
本研究は, LLMを書き込みに最も有効に活用する方法と, これらのモデルとのインタラクションが, 書き込みプロセスにおけるオーナシップや信頼感にどのように影響するかを考察する。
LLMだけで十分なニュースの見出しを生成することができるが、平均すると、望ましくないモデルのアウトプットを修正するには人間による制御が必要である。
論文 参考訳(メタデータ) (2023-10-16T15:11:01Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。