Improving QA Model Performance with Cartographic Inoculation
- URL: http://arxiv.org/abs/2401.17498v2
- Date: Thu, 1 Feb 2024 20:43:02 GMT
- Title: Improving QA Model Performance with Cartographic Inoculation
- Authors: Allen Chen (UT Austin), Okan Tanrikulu (UT Austin)
- Abstract summary: "Dataset artifacts" reduce the model's ability to generalize to real-world QA problems.
We analyze the impacts and incidence of dataset artifacts using an adversarial challenge set.
We show that by selectively fine-tuning a model on ambiguous adversarial examples from a challenge set, significant performance improvements can be made.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: QA models are faced with complex and open-ended contextual reasoning
problems, but can often learn well-performing solution heuristics by exploiting
dataset-specific patterns in their training data. These patterns, or "dataset
artifacts", reduce the model's ability to generalize to real-world QA problems.
Utilizing an ElectraSmallDiscriminator model trained for QA, we analyze the
impacts and incidence of dataset artifacts using an adversarial challenge set
designed to confuse models reliant on artifacts for prediction. Extending
existing work on methods for mitigating artifact impacts, we propose
cartographic inoculation, a novel method that fine-tunes models on an optimized
subset of the challenge data to reduce model reliance on dataset artifacts. We
show that by selectively fine-tuning a model on ambiguous adversarial examples
from a challenge set, significant performance improvements can be made on the
full challenge dataset with minimal loss of model generalizability to other
challenging environments and QA datasets.
Related papers
- A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
In computer vision, it is well-known that a lack of data diversity will impair model performance.
We propose a simple yet effective data augmentation approach by leveraging advancements in generative models.
Background augmentation, in particular, significantly improves the models' robustness and generalization capabilities.
arXiv Detail & Related papers (2024-08-01T07:40:00Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
Synthetic data has been proposed as a solution to address the issue of high-quality data scarcity in the training of large language models (LLMs)
Our work delves into these specific flaws associated with question-answer (Q-A) pairs, a prevalent type of synthetic data, and presents a method based on unlearning techniques to mitigate these flaws.
Our work has yielded key insights into the effective use of synthetic data, aiming to promote more robust and efficient LLM training.
arXiv Detail & Related papers (2024-06-18T08:38:59Z) - AttributionScanner: A Visual Analytics System for Model Validation with Metadata-Free Slice Finding [29.07617945233152]
Data slice finding is an emerging technique for validating machine learning (ML) models by identifying and analyzing subgroups in a dataset that exhibit poor performance.
This approach faces significant challenges, including the laborious and costly requirement for additional metadata.
We introduce AttributionScanner, an innovative human-in-the-loop Visual Analytics (VA) system, designed for metadata-free data slice finding.
Our system identifies interpretable data slices that involve common model behaviors and visualizes these patterns through an Attribution Mosaic design.
arXiv Detail & Related papers (2024-01-12T09:17:32Z) - Downstream Task-Oriented Generative Model Selections on Synthetic Data
Training for Fraud Detection Models [9.754400681589845]
In this paper, we approach the downstream task-oriented generative model selections problem in the case of training fraud detection models.
Our investigation supports that, while both Neural Network(NN)-based and Bayesian Network(BN)-based generative models are both good to complete synthetic training task under loose model interpretability constrain, the BN-based generative models is better than NN-based when synthetic training fraud detection model under strict model interpretability constrain.
arXiv Detail & Related papers (2024-01-01T23:33:56Z) - Evaluating the Capabilities of Multi-modal Reasoning Models with
Synthetic Task Data [0.0]
We leverage advances in high resolution text-to-image generation to develop a framework for generating evaluation data for multi-modal reasoning tasks.
We apply this framework to generate context-dependent anomaly data, creating a synthetic dataset on a challenging task.
We demonstrate that while the task is tractable, the model performs significantly worse on the context-dependent anomaly detection task than on standard VQA tasks.
arXiv Detail & Related papers (2023-06-01T20:56:34Z) - On the Efficacy of Adversarial Data Collection for Question Answering:
Results from a Large-Scale Randomized Study [65.17429512679695]
In adversarial data collection (ADC), a human workforce interacts with a model in real time, attempting to produce examples that elicit incorrect predictions.
Despite ADC's intuitive appeal, it remains unclear when training on adversarial datasets produces more robust models.
arXiv Detail & Related papers (2021-06-02T00:48:33Z) - Comparing Test Sets with Item Response Theory [53.755064720563]
We evaluate 29 datasets using predictions from 18 pretrained Transformer models on individual test examples.
We find that Quoref, HellaSwag, and MC-TACO are best suited for distinguishing among state-of-the-art models.
We also observe span selection task format, which is used for QA datasets like QAMR or SQuAD2.0, is effective in differentiating between strong and weak models.
arXiv Detail & Related papers (2021-06-01T22:33:53Z) - Learning to Perturb Word Embeddings for Out-of-distribution QA [55.103586220757464]
We propose a simple yet effective DA method based on a noise generator, which learns to perturb the word embedding of the input questions and context without changing their semantics.
We validate the performance of the QA models trained with our word embedding on a single source dataset, on five different target domains.
Notably, the model trained with ours outperforms the model trained with more than 240K artificially generated QA pairs.
arXiv Detail & Related papers (2021-05-06T14:12:26Z) - Exposing Shallow Heuristics of Relation Extraction Models with Challenge
Data [49.378860065474875]
We identify failure modes of SOTA relation extraction (RE) models trained on TACRED.
By adding some of the challenge data as training examples, the performance of the model improves.
arXiv Detail & Related papers (2020-10-07T21:17:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.