論文の概要: Linguistically Communicating Uncertainty in Patient-Facing Risk
Prediction Models
- arxiv url: http://arxiv.org/abs/2401.17511v1
- Date: Wed, 31 Jan 2024 00:08:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-01 16:04:14.275091
- Title: Linguistically Communicating Uncertainty in Patient-Facing Risk
Prediction Models
- Title(参考訳): リスク予測モデルにおける言語学的不確実性
- Authors: Adarsa Sivaprasad and Ehud Reiter
- Abstract要約: リスク予測の文脈において、自然言語を用いたコミュニケーションモデルの性能、信頼性、推論、未知の未知の知識の課題を特定する。
本研究では,これらの課題に対処するための設計を提案し,環境内受精結果予測の具体的適用に焦点をあてる。
- 参考スコア(独自算出の注目度): 5.943325136516882
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper addresses the unique challenges associated with uncertainty
quantification in AI models when applied to patient-facing contexts within
healthcare. Unlike traditional eXplainable Artificial Intelligence (XAI)
methods tailored for model developers or domain experts, additional
considerations of communicating in natural language, its presentation and
evaluating understandability are necessary. We identify the challenges in
communication model performance, confidence, reasoning and unknown knowns using
natural language in the context of risk prediction. We propose a design aimed
at addressing these challenges, focusing on the specific application of
in-vitro fertilisation outcome prediction.
- Abstract(参考訳): 本稿では,aiモデルの不確実性定量化に関連するユニークな課題を,医療における患者対応コンテキストに適用する。
モデル開発者やドメインエキスパートに適した従来のeXplainable Artificial Intelligence(XAI)メソッドとは異なり、自然言語でのコミュニケーションに関する追加の考慮が必要である。
リスク予測の文脈において,自然言語を用いたコミュニケーションモデルの性能,信頼性,推論,未知知識の課題を明らかにする。
本研究では,これらの課題に対処するための設計を提案し,環境内受精結果予測の具体的適用に焦点をあてる。
関連論文リスト
- On Uncertainty In Natural Language Processing [2.5076643086429993]
この論文は、自然言語処理における不確実性が言語的、統計的、神経的な観点からどのように特徴づけられるかを研究する。
本研究では,非交換不能な共形予測に基づく自然言語生成における校正サンプリング手法を提案する。
最後に,補助予測器を用いた大規模ブラックボックス言語モデルの信頼性の定量化手法を開発した。
論文 参考訳(メタデータ) (2024-10-04T14:08:02Z) - On Subjective Uncertainty Quantification and Calibration in Natural Language Generation [2.622066970118316]
大規模言語モデルは多くの場合、不確実な定量化が困難になるような自由形式の応答を生成する。
この研究はベイズ決定論の観点からこれらの課題に対処する。
本稿では,モデルの主観的不確実性とそのキャリブレーションを原理的に定量化する方法について論じる。
提案手法はブラックボックス言語モデルに適用できる。
論文 参考訳(メタデータ) (2024-06-07T18:54:40Z) - Conformal Prediction for Natural Language Processing: A Survey [23.638214012459425]
コンフォーマル予測は理論的に健全で実用的なフレームワークとして現れている。
そのモデルに依存しない分布のない性質は、特にNLPシステムの現在の欠点に対処することを約束している。
本稿では,共形予測手法とその保証,およびNLPにおける既存応用に関する包括的調査を行う。
論文 参考訳(メタデータ) (2024-05-03T10:00:45Z) - DPP-Based Adversarial Prompt Searching for Lanugage Models [56.73828162194457]
Auto-Regressive Selective Replacement Ascent (ASRA)は、決定点プロセス(DPP)と品質と類似性の両方に基づいてプロンプトを選択する離散最適化アルゴリズムである。
6種類の事前学習言語モデルに対する実験結果から,ASRAによる有害成分の抽出の有効性が示された。
論文 参考訳(メタデータ) (2024-03-01T05:28:06Z) - Explainable AI for clinical risk prediction: a survey of concepts,
methods, and modalities [2.9404725327650767]
臨床リスク予測のための説明可能なモデルの開発状況
外部検証の必要性と多様な解釈可能性メソッドの組み合わせを強調している。
臨床リスク予測における説明可能性へのエンドツーエンドアプローチは成功に不可欠である。
論文 参考訳(メタデータ) (2023-08-16T14:51:51Z) - Uncertainty-Aware Natural Language Inference with Stochastic Weight
Averaging [8.752563431501502]
本稿では,自然言語理解(NLU)タスクにおけるウェイト平均ガウス(SWAG)を用いたベイズ的不確実性モデリングを提案する。
提案手法の有効性を,ヒトのアノテーションの不一致に対する予測精度と相関性の観点から示す。
論文 参考訳(メタデータ) (2023-04-10T17:37:23Z) - Boosting the interpretability of clinical risk scores with intervention
predictions [59.22442473992704]
本稿では、今後の介入に関するモデルの仮定を明確に伝達する手段として、介入政策と有害事象リスクの合同モデルを提案する。
死亡確率などの典型的なリスクスコアと将来の介入確率スコアとを組み合わせることで、より解釈可能な臨床予測がもたらされることを示す。
論文 参考訳(メタデータ) (2022-07-06T19:49:42Z) - Does Pre-training Induce Systematic Inference? How Masked Language
Models Acquire Commonsense Knowledge [91.15301779076187]
プレトレーニング中のBERTモデルのミニバッチに言語知識を導入し、モデルがサポート対象の推論にどの程度うまく一般化するかを評価する。
一般化は事前学習の過程では改善せず, 帰納的, 体系的推論ではなく, 表面的, 共起的パターンからコモンセンス知識が獲得されることが示唆された。
論文 参考訳(メタデータ) (2021-12-16T03:13:04Z) - Ethical-Advice Taker: Do Language Models Understand Natural Language
Interventions? [62.74872383104381]
読解システムにおける自然言語介入の有効性について検討する。
本稿では,新たな言語理解タスクであるLingguistic Ethical Interventions (LEI)を提案する。
論文 参考訳(メタデータ) (2021-06-02T20:57:58Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - Uncertainty as a Form of Transparency: Measuring, Communicating, and
Using Uncertainty [66.17147341354577]
我々は,モデル予測に関連する不確実性を推定し,伝達することにより,相補的な透明性の形式を考えることについて議論する。
モデルの不公平性を緩和し、意思決定を強化し、信頼できるシステムを構築するために不確実性がどのように使われるかを説明する。
この研究は、機械学習、可視化/HCI、デザイン、意思決定、公平性にまたがる文学から引き出された学際的レビューを構成する。
論文 参考訳(メタデータ) (2020-11-15T17:26:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。