Towards Understanding Variants of Invariant Risk Minimization through the Lens of Calibration
- URL: http://arxiv.org/abs/2401.17541v4
- Date: Tue, 18 Jun 2024 01:49:58 GMT
- Title: Towards Understanding Variants of Invariant Risk Minimization through the Lens of Calibration
- Authors: Kotaro Yoshida, Hiroki Naganuma,
- Abstract summary: We show that Information Bottleneck-based IRM achieves consistent calibration across different environments.
Our empirical evidence indicates that models exhibiting consistent calibration across environments are also well-calibrated.
- Score: 0.6906005491572401
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning models traditionally assume that training and test data are independently and identically distributed. However, in real-world applications, the test distribution often differs from training. This problem, known as out-of-distribution (OOD) generalization, challenges conventional models. Invariant Risk Minimization (IRM) emerges as a solution that aims to identify invariant features across different environments to enhance OOD robustness. However, IRM's complexity, particularly its bi-level optimization, has led to the development of various approximate methods. Our study investigates these approximate IRM techniques, using the consistency and variance of calibration across environments as metrics to measure the invariance aimed for by IRM. Calibration, which measures the reliability of model prediction, serves as an indicator of whether models effectively capture environment-invariant features by showing how uniformly over-confident the model remains across varied environments. Through a comparative analysis of datasets with distributional shifts, we observe that Information Bottleneck-based IRM achieves consistent calibration across different environments. This observation suggests that information compression techniques, such as IB, are potentially effective in achieving model invariance. Furthermore, our empirical evidence indicates that models exhibiting consistent calibration across environments are also well-calibrated. This demonstrates that invariance and cross-environment calibration are empirically equivalent. Additionally, we underscore the necessity for a systematic approach to evaluating OOD generalization. This approach should move beyond traditional metrics, such as accuracy and F1 scores, which fail to account for the model's degree of over-confidence, and instead focus on the nuanced interplay between accuracy, calibration, and model invariance.
Related papers
- Model aggregation: minimizing empirical variance outperforms minimizing
empirical error [0.29008108937701327]
We propose a data-driven framework that aggregates predictions from diverse models into a single, more accurate output.
It is non-intrusive - treating models as black-box functions - model-agnostic, requires minimal assumptions, and can combine outputs from a wide range of models.
We show how it successfully integrates traditional solvers with machine learning models to improve both robustness and accuracy.
arXiv Detail & Related papers (2024-09-25T18:33:21Z) - Quantifying Distribution Shifts and Uncertainties for Enhanced Model Robustness in Machine Learning Applications [0.0]
This study explores model adaptation and generalization by utilizing synthetic data.
We employ quantitative measures such as Kullback-Leibler divergence, Jensen-Shannon distance, and Mahalanobis distance to assess data similarity.
Our findings suggest that utilizing statistical measures, such as the Mahalanobis distance, to determine whether model predictions fall within the low-error "interpolation regime" or the high-error "extrapolation regime" provides a complementary method for assessing distribution shift and model uncertainty.
arXiv Detail & Related papers (2024-05-03T10:05:31Z) - Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
We propose a collaborative inverse propensity score estimator for causal inference with heterogeneous data.
Our method shows significant improvements over the methods based on meta-analysis when heterogeneity increases.
arXiv Detail & Related papers (2024-04-24T09:04:36Z) - Counterfactual Fairness through Transforming Data Orthogonal to Bias [7.109458605736819]
We propose a novel data pre-processing algorithm, Orthogonal to Bias (OB)
OB is designed to eliminate the influence of a group of continuous sensitive variables, thus promoting counterfactual fairness in machine learning applications.
OB is model-agnostic, making it applicable to a wide range of machine learning models and tasks.
arXiv Detail & Related papers (2024-03-26T16:40:08Z) - The Implicit Bias of Heterogeneity towards Invariance: A Study of Multi-Environment Matrix Sensing [9.551225697705199]
This paper studies the implicit bias of Gradient Descent (SGD) over heterogeneous data and shows that the implicit bias drives the model learning towards an invariant solution.
Specifically, we theoretically investigate the multi-environment low-rank matrix sensing problem where in each environment, the signal comprises (i) a lower-rank invariant part shared across all environments; and (ii) a significantly varying environment-dependent spurious component.
The key insight is, through simply employing the large step size large-batch SGD sequentially in each environment without any explicit regularization, the oscillation caused by heterogeneity can provably prevent model learning spurious signals.
arXiv Detail & Related papers (2024-03-03T07:38:24Z) - Calibrating Large Language Models with Sample Consistency [76.23956851098598]
We explore the potential of deriving confidence from the distribution of multiple randomly sampled model generations, via three measures of consistency.
Results show that consistency-based calibration methods outperform existing post-hoc approaches.
We offer practical guidance on choosing suitable consistency metrics for calibration, tailored to the characteristics of various LMs.
arXiv Detail & Related papers (2024-02-21T16:15:20Z) - Calibration-Aware Bayesian Learning [37.82259435084825]
This paper proposes an integrated framework, referred to as calibration-aware Bayesian neural networks (CA-BNNs)
It applies both data-dependent or data-independent regularizers while optimizing over a variational distribution as in Bayesian learning.
Numerical results validate the advantages of the proposed approach in terms of expected calibration error (ECE) and reliability diagrams.
arXiv Detail & Related papers (2023-05-12T14:19:15Z) - Calibration of Neural Networks [77.34726150561087]
This paper presents a survey of confidence calibration problems in the context of neural networks.
We analyze problem statement, calibration definitions, and different approaches to evaluation.
Empirical experiments cover various datasets and models, comparing calibration methods according to different criteria.
arXiv Detail & Related papers (2023-03-19T20:27:51Z) - On the Strong Correlation Between Model Invariance and Generalization [54.812786542023325]
Generalization captures a model's ability to classify unseen data.
Invariance measures consistency of model predictions on transformations of the data.
From a dataset-centric view, we find a certain model's accuracy and invariance linearly correlated on different test sets.
arXiv Detail & Related papers (2022-07-14T17:08:25Z) - Trustworthy Multimodal Regression with Mixture of Normal-inverse Gamma
Distributions [91.63716984911278]
We introduce a novel Mixture of Normal-Inverse Gamma distributions (MoNIG) algorithm, which efficiently estimates uncertainty in principle for adaptive integration of different modalities and produces a trustworthy regression result.
Experimental results on both synthetic and different real-world data demonstrate the effectiveness and trustworthiness of our method on various multimodal regression tasks.
arXiv Detail & Related papers (2021-11-11T14:28:12Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
This paper investigates the problem of learning robust, generalizable prediction models from a combination of datasets.
Part of the challenge of learning robust models lies in the influence of unobserved confounders.
We demonstrate the empirical performance of our approach on healthcare data from different modalities.
arXiv Detail & Related papers (2020-07-21T08:18:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.