LaneGraph2Seq: Lane Topology Extraction with Language Model via
Vertex-Edge Encoding and Connectivity Enhancement
- URL: http://arxiv.org/abs/2401.17609v2
- Date: Mon, 19 Feb 2024 15:32:28 GMT
- Title: LaneGraph2Seq: Lane Topology Extraction with Language Model via
Vertex-Edge Encoding and Connectivity Enhancement
- Authors: Renyuan Peng, Xinyue Cai, Hang Xu, Jiachen Lu, Feng Wen, Wei Zhang, Li
Zhang
- Abstract summary: Intricate road structures are often depicted using lane graphs, which include centerline curves and connections forming a Directed Acyclic Graph (DAG)
We introduce LaneGraph2Seq, a novel approach for lane graph extraction.
Our method demonstrates superior performance compared to state-of-the-art techniques in lane graph extraction.
- Score: 34.017743757153866
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Understanding road structures is crucial for autonomous driving. Intricate
road structures are often depicted using lane graphs, which include centerline
curves and connections forming a Directed Acyclic Graph (DAG). Accurate
extraction of lane graphs relies on precisely estimating vertex and edge
information within the DAG. Recent research highlights Transformer-based
language models' impressive sequence prediction abilities, making them
effective for learning graph representations when graph data are encoded as
sequences. However, existing studies focus mainly on modeling vertices
explicitly, leaving edge information simply embedded in the network.
Consequently, these approaches fall short in the task of lane graph extraction.
To address this, we introduce LaneGraph2Seq, a novel approach for lane graph
extraction. It leverages a language model with vertex-edge encoding and
connectivity enhancement. Our serialization strategy includes a vertex-centric
depth-first traversal and a concise edge-based partition sequence.
Additionally, we use classifier-free guidance combined with nucleus sampling to
improve lane connectivity. We validate our method on prominent datasets,
nuScenes and Argoverse 2, showcasing consistent and compelling results. Our
LaneGraph2Seq approach demonstrates superior performance compared to
state-of-the-art techniques in lane graph extraction.
Related papers
- Improving Graph Neural Networks by Learning Continuous Edge Directions [0.0]
Graph Neural Networks (GNNs) traditionally employ a message-passing mechanism that resembles diffusion over undirected graphs.
Our key insight is to assign fuzzy edge directions to the edges of a graph so that features can preferentially flow in one direction between nodes.
We propose a general framework, called Continuous Edge Direction (CoED) GNN, for learning on graphs with fuzzy edges.
arXiv Detail & Related papers (2024-10-18T01:34:35Z) - Enhanced Expressivity in Graph Neural Networks with Lanczos-Based Linear Constraints [7.605749412696919]
Graph Neural Networks (GNNs) excel in handling graph-structured data but often underperform in link prediction tasks.
We present a novel method to enhance the expressivity of GNNs by embedding induced subgraphs into the graph Laplacian matrix's eigenbasis.
Our method achieves 20x and 10x speedup by only requiring 5% and 10% data from the PubMed and OGBL-Vessel datasets.
arXiv Detail & Related papers (2024-08-22T12:22:00Z) - You Only Transfer What You Share: Intersection-Induced Graph Transfer
Learning for Link Prediction [79.15394378571132]
We investigate a previously overlooked phenomenon: in many cases, a densely connected, complementary graph can be found for the original graph.
The denser graph may share nodes with the original graph, which offers a natural bridge for transferring selective, meaningful knowledge.
We identify this setting as Graph Intersection-induced Transfer Learning (GITL), which is motivated by practical applications in e-commerce or academic co-authorship predictions.
arXiv Detail & Related papers (2023-02-27T22:56:06Z) - Learning and Aggregating Lane Graphs for Urban Automated Driving [26.34702432184092]
Lane graph estimation is an essential and highly challenging task in automated driving and HD map learning.
We propose a novel bottom-up approach to lane graph estimation from aerial imagery that aggregates multiple overlapping graphs into a single consistent graph.
We make our large-scale urban lane graph dataset and code publicly available at http://urbanlanegraph.cs.uni-freiburg.de.
arXiv Detail & Related papers (2023-02-13T08:23:35Z) - Edge but not Least: Cross-View Graph Pooling [76.71497833616024]
This paper presents a cross-view graph pooling (Co-Pooling) method to better exploit crucial graph structure information.
Through cross-view interaction, edge-view pooling and node-view pooling seamlessly reinforce each other to learn more informative graph-level representations.
arXiv Detail & Related papers (2021-09-24T08:01:23Z) - Joint Graph Learning and Matching for Semantic Feature Correspondence [69.71998282148762]
We propose a joint emphgraph learning and matching network, named GLAM, to explore reliable graph structures for boosting graph matching.
The proposed method is evaluated on three popular visual matching benchmarks (Pascal VOC, Willow Object and SPair-71k)
It outperforms previous state-of-the-art graph matching methods by significant margins on all benchmarks.
arXiv Detail & Related papers (2021-09-01T08:24:02Z) - Edge Representation Learning with Hypergraphs [36.03482700241067]
We propose a novel edge representation learning framework based on Dual Hypergraph Transformation (DHT), which transforms the edges of a graph into the nodes of a hypergraph.
We validate our edge representation learning method with hypergraphs on diverse graph datasets for graph representation and generation performance.
Our edge representation learning and pooling method also largely outperforms state-of-the-art graph pooling methods on graph classification.
arXiv Detail & Related papers (2021-06-30T06:59:05Z) - Learnable Graph Matching: Incorporating Graph Partitioning with Deep
Feature Learning for Multiple Object Tracking [58.30147362745852]
Data association across frames is at the core of Multiple Object Tracking (MOT) task.
Existing methods mostly ignore the context information among tracklets and intra-frame detections.
We propose a novel learnable graph matching method to address these issues.
arXiv Detail & Related papers (2021-03-30T08:58:45Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
We consider the graph link prediction task, which is a classic graph analytical problem with many real-world applications.
In this formalism, a link prediction problem is converted to a graph classification task.
We propose to seek a radically different and novel path by making use of the line graphs in graph theory.
In particular, each node in a line graph corresponds to a unique edge in the original graph. Therefore, link prediction problems in the original graph can be equivalently solved as a node classification problem in its corresponding line graph, instead of a graph classification task.
arXiv Detail & Related papers (2020-10-20T05:54:31Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.