論文の概要: Rapid post-disaster infrastructure damage characterisation enabled by remote sensing and deep learning technologies -- a tiered approach
- arxiv url: http://arxiv.org/abs/2401.17759v3
- Date: Sat, 30 Mar 2024 15:46:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-02 14:15:46.204148
- Title: Rapid post-disaster infrastructure damage characterisation enabled by remote sensing and deep learning technologies -- a tiered approach
- Title(参考訳): リモートセンシングとディープラーニング技術によって実現された迅速なインフラストラクチャ障害の特徴化 -- 階層的アプローチ
- Authors: Nadiia Kopiika, Andreas Karavias, Pavlos Krassakis, Zehao Ye, Jelena Ninic, Nataliya Shakhovska, Nikolaos Koukouzas, Sotirios Argyroudis, Stergios-Aristoteles Mitoulis,
- Abstract要約: 重要なインフラは戦争や大規模な自然災害で体系的に標的にされている。
複数スケールの損傷を総合的に特徴づける手法は存在しない。
本稿では,この能力ギャップを埋めるためのマルチスケール階層化手法を提案する。
- 参考スコア(独自算出の注目度): 0.4837072536850576
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Critical infrastructure are systematically targeted during wars and extensive natural disasters because critical infrastructure is vital for enabling connectivity and transportation of people and goods, and hence, underpins national and international economic growth. Mass destruction of transport assets, in conjunction with minimal or no accessibility in the wake of natural and anthropogenic disasters, prevents us from delivering rapid recovery and adaptation. A solution to this challenge is to use technology that enables stand-off observations. Nevertheless, no methods exist for the integrated characterisation of damage at multiple scales, i.e. regional, asset, and structural scales, while there is no systematic correlation between infrastructure damage assessments across these scales. We propose a methodology based on an integrated multi-scale tiered approach to fill this capability gap. In doing so, we demonstrate how damage characterisation can be enabled by fit-for-purpose digital technologies. Next, the methodology is applied and validated to a case study in Ukraine that includes 17 bridges all damages by human targeted interventions. From macro to micro, we deploy technology to integrate assessments at scale, using from Sentinel-1 SAR images, crowdsourced information, and high-resolution images to deep learning to characterise infrastructure damage. For the first time, the interferometric coherence difference and semantic segmentation of images were deployed to improve the reliability of damage characterisations at different scales, i.e. regional, infrastructure asset and component, with the aim of enhancing the damage characterisation accuracy. This integrated approach accelerates decision-making, and therefore, facilitates more efficient restoration and adaptation efforts, ultimately fostering resilience into our infrastructure.
- Abstract(参考訳): 重要なインフラは、人や商品の接続と輸送を可能にするために不可欠であるため、戦争や大規模な自然災害の間、体系的に標的となっている。
輸送資産の大量破壊は、自然災害や人為的災害によるアクセシビリティの低下と相まって、迅速な回復と適応を妨げます。
この課題の解決策は、スタンドオフ観察を可能にする技術を使用することである。
しかし, 地域, 資産, 構造規模など複数スケールの被害評価を総合的に評価する手法は存在せず, インフラ被害評価の体系的相関は存在しない。
本稿では,この能力ギャップを埋めるために,統合されたマルチスケール階層型アプローチに基づく方法論を提案する。
そこで本研究では,デジタル技術の適合により,損傷特性化が実現可能であることを実証する。
次に、この手法をウクライナのケーススタディに適用し、人間を標的とした介入によって17の橋が損傷するケーススタディに検証する。
マクロからマイクロまで、Sentinel-1 SAR画像、クラウドソース情報、高解像度画像からインフラの損傷を特徴付けるためのディープラーニングまで、大規模に評価を統合する技術を展開する。
画像の相互干渉的コヒーレンス差とセマンティックセグメンテーションは, 地域, インフラ資産, コンポーネントなど, 損傷特性の信頼性を向上させるために初めて展開された。
この統合されたアプローチは意思決定を加速し、より効率的な復元と適応作業を促進し、最終的にはインフラストラクチャへのレジリエンスを促進します。
関連論文リスト
- PDSR: Efficient UAV Deployment for Swift and Accurate Post-Disaster Search and Rescue [2.367791790578455]
本稿では,PDSR(Post-Disaster Search and Rescue)のための包括的フレームワークを提案する。
この概念の中心は、多様なセンシング、通信、情報機能を備えたUAVスワムの迅速な展開である。
提案手法は従来の手法よりもはるかに高速に損傷領域の完全なカバレッジを実現することを目的としている。
論文 参考訳(メタデータ) (2024-10-30T12:46:15Z) - Multi-step feature fusion for natural disaster damage assessment on satellite images [0.0]
複数のネットワークレベルで機能融合を行う新しい畳み込みニューラルネットワーク(CNN)モジュールを導入する。
イメージペアの分析にCNNモデルを適用するために、追加のネットワーク要素であるFuse Moduleが提案された。
視覚変換器モデルの精度は3ポイント以上向上した。
論文 参考訳(メタデータ) (2024-10-29T09:47:32Z) - Towards Efficient Disaster Response via Cost-effective Unbiased Class Rate Estimation through Neyman Allocation Stratified Sampling Active Learning [11.697034536189094]
本稿では,二分分類のためのランダムサンプリング木を構築する革新的なアルゴリズムを提案する。
その結果,本手法は受動的および従来の能動的学習手法を超越していることが判明した。
従来のアクティブな学習戦略における「サンプルバイアス」の課題に効果的に対処する。
論文 参考訳(メタデータ) (2024-05-28T01:34:35Z) - Robust Disaster Assessment from Aerial Imagery Using Text-to-Image Synthetic Data [66.49494950674402]
航空画像からの損傷評価のタスクのための大規模合成監視を作成する際に,新たなテキスト・画像生成モデルを活用する。
低リソース領域から何千ものポストディスアスター画像を生成するために、効率的でスケーラブルなパイプラインを構築しています。
我々は,xBDおよびSKAI画像のクロスジオグラフィー領域転送設定におけるフレームワークの強度を,単一ソースとマルチソースの両方で検証する。
論文 参考訳(メタデータ) (2024-05-22T16:07:05Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuardは、障害タイプとゾーン分類のための最初のフレームワークであり、敵攻撃に耐性がある。
本稿では,ロバスト性を高めるために,低複雑性故障予測モデルとオンライン逆行訓練手法を提案する。
本モデルでは,耐故障予測ベンチマークの最先端を最大0.958の精度で上回っている。
論文 参考訳(メタデータ) (2024-03-26T08:51:23Z) - Disentangling the Causes of Plasticity Loss in Neural Networks [55.23250269007988]
可塑性の喪失は複数の独立したメカニズムに分解できることを示す。
種々の非定常学習タスクにおいて, 層正規化と重み劣化の組み合わせは, 可塑性維持に極めて有効であることを示す。
論文 参考訳(メタデータ) (2024-02-29T00:02:33Z) - AI-Based Energy Transportation Safety: Pipeline Radial Threat Estimation
Using Intelligent Sensing System [52.93806509364342]
本稿では,分散光ファイバーセンシング技術に基づくエネルギーパイプラインの放射状脅威推定手法を提案する。
本稿では,包括的信号特徴抽出のための連続的マルチビュー・マルチドメイン機能融合手法を提案する。
本研究では,事前学習モデルによる伝達学習の概念を取り入れ,認識精度と学習効率の両立を図る。
論文 参考訳(メタデータ) (2023-12-18T12:37:35Z) - Interpretability in Convolutional Neural Networks for Building Damage
Classification in Satellite Imagery [0.0]
我々は、プレサスタ衛星画像とポストサスタ衛星画像とをラベル付けしたデータセットを使用して、建物ごとの損傷を評価する。
複数の畳み込みニューラルネットワーク(CNN)をトレーニングし、建物ごとの損傷を評価する。
我々の研究は、人為的気候変動による人道的危機の進行に、計算的に貢献することを目指している。
論文 参考訳(メタデータ) (2022-01-24T16:55:56Z) - EmergencyNet: Efficient Aerial Image Classification for Drone-Based
Emergency Monitoring Using Atrous Convolutional Feature Fusion [8.634988828030245]
本稿では,緊急対応・監視用uavの航空機画像の効率的な分類について述べる。
緊急対応アプリケーションのための専用空中画像データベースを導入し、既存のアプローチの比較分析を行う。
マルチレゾリューション機能を処理するために,アトラス畳み込みに基づく軽量畳み込みニューラルネットワークアーキテクチャが提案されている。
論文 参考訳(メタデータ) (2021-04-28T20:24:10Z) - RescueNet: Joint Building Segmentation and Damage Assessment from
Satellite Imagery [83.49145695899388]
RescueNetは、建物を同時に分割し、個々の建物に対する損傷レベルを評価し、エンドツーエンドでトレーニングできる統一モデルである。
RescueNetは大規模で多様なxBDデータセットでテストされており、従来の手法よりもはるかに優れたセグメンテーションと損傷分類性能を実現している。
論文 参考訳(メタデータ) (2020-04-15T19:52:09Z) - Real-world Person Re-Identification via Degradation Invariance Learning [111.86722193694462]
現実のシナリオにおける人物再識別(Re-ID)は通常、低解像度、弱い照明、ぼやけ、悪天候などの様々な劣化要因に悩まされる。
本稿では,現実世界のRe-IDを対象とした劣化不変学習フレームワークを提案する。
自己教師付き不整合表現学習戦略を導入することにより,個人性に関連する頑健な特徴を同時に抽出することができる。
論文 参考訳(メタデータ) (2020-04-10T07:58:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。