論文の概要: Multi-step feature fusion for natural disaster damage assessment on satellite images
- arxiv url: http://arxiv.org/abs/2410.21901v1
- Date: Tue, 29 Oct 2024 09:47:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-30 13:40:27.627872
- Title: Multi-step feature fusion for natural disaster damage assessment on satellite images
- Title(参考訳): 衛星画像の自然災害被害評価のための多段階機能融合
- Authors: Mateusz Żarski, Jarosław Adam Miszczak,
- Abstract要約: 複数のネットワークレベルで機能融合を行う新しい畳み込みニューラルネットワーク(CNN)モジュールを導入する。
イメージペアの分析にCNNモデルを適用するために、追加のネットワーク要素であるFuse Moduleが提案された。
視覚変換器モデルの精度は3ポイント以上向上した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Quick and accurate assessment of the damage state of buildings after natural disasters is crucial for undertaking properly targeted rescue and subsequent recovery operations, which can have a major impact on the safety of victims and the cost of disaster recovery. The quality of such a process can be significantly improved by harnessing the potential of machine learning methods in computer vision. This paper presents a novel damage assessment method using an original multi-step feature fusion network for the classification of the damage state of buildings based on pre- and post-disaster large-scale satellite images. We introduce a novel convolutional neural network (CNN) module that performs feature fusion at multiple network levels between pre- and post-disaster images in the horizontal and vertical directions of CNN network. An additional network element - Fuse Module - was proposed to adapt any CNN model to analyze image pairs in the issue of pair classification. We use, open, large-scale datasets (IDA-BD and xView2) to verify, that the proposed method is suitable to improve on existing state-of-the-art architectures. We report over a 3 percentage point increase in the accuracy of the Vision Transformer model.
- Abstract(参考訳): 自然災害後の建物の被害状況の迅速かつ正確な評価は, 被災者の安全と災害復旧コストに大きな影響を及ぼすおそれのある, 適切な救助及びその後の復旧活動に不可欠である。
このようなプロセスの品質は、コンピュータビジョンにおける機械学習手法の可能性を生かして、大幅に向上することができる。
本稿では,前・後大規模衛星画像に基づいて建物の損傷状況の分類を行うために,原型多段階機能融合ネットワークを用いた新しい損傷評価手法を提案する。
本稿では,CNNネットワークの水平方向と垂直方向の事前画像と後画像の間で,複数のネットワークレベルで特徴融合を行う新しい畳み込みニューラルネットワーク(CNN)モジュールを提案する。
追加のネットワーク要素であるFuse Moduleは、任意のCNNモデルを適用して、ペア分類の問題においてイメージペアを分析するために提案された。
オープンで大規模なデータセット(IDA-BDとxView2)を用いて,提案手法が既存の最先端アーキテクチャの改善に適していることを検証する。
視覚変換器モデルの精度は3ポイント以上向上した。
関連論文リスト
- Robust Disaster Assessment from Aerial Imagery Using Text-to-Image Synthetic Data [66.49494950674402]
航空画像からの損傷評価のタスクのための大規模合成監視を作成する際に,新たなテキスト・画像生成モデルを活用する。
低リソース領域から何千ものポストディスアスター画像を生成するために、効率的でスケーラブルなパイプラインを構築しています。
我々は,xBDおよびSKAI画像のクロスジオグラフィー領域転送設定におけるフレームワークの強度を,単一ソースとマルチソースの両方で検証する。
論文 参考訳(メタデータ) (2024-05-22T16:07:05Z) - DeepDamageNet: A two-step deep-learning model for multi-disaster building damage segmentation and classification using satellite imagery [12.869300064524122]
本稿では, 損傷評価, セグメンテーション, 分類において, ディープラーニングモデルによる2つの重要な課題を遂行するソリューションを提案する。
我々の最良のモデルは、建物識別セマンティックセグメンテーション畳み込みニューラルネットワーク(CNN)と建物損傷分類CNNを組み合わせ、合計F1スコアは0.66である。
本モデルでは比較的精度の高い建物を同定することができたが,災害タイプによる被害の分類は困難であることが判明した。
論文 参考訳(メタデータ) (2024-05-08T04:21:03Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
本稿では,拡散型異常検出(Difusion-based Anomaly Detection, DAD)フレームワークを提案する。
画素空間オートエンコーダ、安定拡散の復調ネットワークに接続する潜在空間セマンティックガイド(SG)ネットワーク、特徴空間事前学習機能抽出器から構成される。
MVTec-ADとVisAデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-12-11T18:38:28Z) - Classification of structural building damage grades from multi-temporal
photogrammetric point clouds using a machine learning model trained on
virtual laser scanning data [58.720142291102135]
実世界の点雲からの多層建築物の損傷を自動的に評価する新しい手法を提案する。
我々は、仮想レーザースキャン(VLS)データに基づいて訓練された機械学習モデルを使用する。
このモデルでは、高いマルチターゲット分類精度(全精度:92.0% - 95.1%)が得られる。
論文 参考訳(メタデータ) (2023-02-24T12:04:46Z) - DAHiTrA: Damage Assessment Using a Novel Hierarchical Transformer
Architecture [4.162725423624233]
本稿では,衛星画像に基づいて建物損傷を分類する階層変換器を用いた新しいディープラーニングモデルDAHiTrAを提案する。
衛星画像はリアルタイムで高被覆情報を提供する。
ディープラーニング手法は、建物の損傷を分類する上で有望であることが示されている。
論文 参考訳(メタデータ) (2022-08-03T16:41:39Z) - Interpretability in Convolutional Neural Networks for Building Damage
Classification in Satellite Imagery [0.0]
我々は、プレサスタ衛星画像とポストサスタ衛星画像とをラベル付けしたデータセットを使用して、建物ごとの損傷を評価する。
複数の畳み込みニューラルネットワーク(CNN)をトレーニングし、建物ごとの損傷を評価する。
我々の研究は、人為的気候変動による人道的危機の進行に、計算的に貢献することを目指している。
論文 参考訳(メタデータ) (2022-01-24T16:55:56Z) - Meta Adversarial Perturbations [66.43754467275967]
メタ逆境摂動(MAP)の存在を示す。
MAPは1段階の上昇勾配更新によって更新された後、自然画像を高い確率で誤分類する。
これらの摂動は画像に依存しないだけでなく、モデルに依存しないものであり、単一の摂動は見えないデータポイントと異なるニューラルネットワークアーキテクチャにまたがってうまく一般化される。
論文 参考訳(メタデータ) (2021-11-19T16:01:45Z) - BDANet: Multiscale Convolutional Neural Network with Cross-directional
Attention for Building Damage Assessment from Satellite Images [24.989412626461213]
衛星画像からの損傷評価は、救援活動が展開される前に重要となる。
深いニューラルネットワークは建物の損傷評価に首尾よく適用されました。
本稿では,bdanetと呼ばれる損傷評価のための2段階畳み込みニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-05-16T06:13:28Z) - MSNet: A Multilevel Instance Segmentation Network for Natural Disaster
Damage Assessment in Aerial Videos [74.22132693931145]
本研究では, ハリケーン, 洪水, 火災などの自然災害後の建物被害を効率的に評価する課題について検討する。
最初のコントリビューションは、ソーシャルメディアからユーザ生成された空中ビデオと、インスタンスレベルのビルディング損傷マスクのアノテーションで構成される、新しいデータセットである。
第二のコントリビューションはMSNetと呼ばれる新しいモデルで、新しい領域の提案ネットワーク設計を含んでいる。
論文 参考訳(メタデータ) (2020-06-30T02:23:05Z) - RescueNet: Joint Building Segmentation and Damage Assessment from
Satellite Imagery [83.49145695899388]
RescueNetは、建物を同時に分割し、個々の建物に対する損傷レベルを評価し、エンドツーエンドでトレーニングできる統一モデルである。
RescueNetは大規模で多様なxBDデータセットでテストされており、従来の手法よりもはるかに優れたセグメンテーションと損傷分類性能を実現している。
論文 参考訳(メタデータ) (2020-04-15T19:52:09Z) - An Attention-Based System for Damage Assessment Using Satellite Imagery [18.43310705820528]
本稿では,建物の損傷レベルを評価するため,Siam-U-Net-Attnモデルを提案する。
大規模建物被害評価データセットである xView2 上で提案手法の評価を行い,提案手法が正確な被害規模分類と建物分割を同時に達成できることを実証した。
論文 参考訳(メタデータ) (2020-04-14T16:37:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。